【图像分类】理论篇(2)经典卷积神经网络 Lenet~Densenet

1、卷积运算

 在二维卷积运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。 当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。 在如上例子中,输出张量的四个元素由二维互相关运算得到,这个输出高度为2、宽度为2,如下所示:

import torch
from torch import nndef Conv2d(X, K):  """计算二维卷积运算"""h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

2、经典卷积神经网络

2.1 Lenet

网络构架:

代码实现:

import torch
import torch.nn as nnclass LeNet(nn.Module):def __init__(self, num_classes=10):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)self.pool1 = nn.MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)self.pool2 = nn.MaxPool2d(kernel_size=2)self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)self.fc2 = nn.Linear(in_features=120, out_features=84)self.fc3 = nn.Linear(in_features=84, out_features=num_classes)def forward(self, x):x = self.pool1(torch.relu(self.conv1(x)))x = self.pool2(torch.relu(self.conv2(x)))x = x.view(-1, 16*5*5)x = torch.relu(self.fc1(x))x = torch.relu(self.fc2(x))x = self.fc3(x)return x# 创建LeNet模型
model = LeNet(num_classes=10)
print(model)

LeNet实现适用于MNIST数据集,其中输入图像大小为28x28,输出类别数为10(0-9的手写数字)。

2.2 Alexnet

网络构架:

 

 

代码实现:

import torch
import torch.nn as nnclass AlexNet(nn.Module):def __init__(self, num_classes=1000):super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(64, 192, kernel_size=5, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)self.avgpool = nn.AdaptiveAvgPool2d((6, 6))self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 6 * 6, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x# 创建AlexNet模型
model = AlexNet(num_classes=1000)
print(model)

代码中的AlexNet实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

2.3 VGG

VGG16网络构架:

代码实现:

import torch
import torch.nn as nnclass VGG16(nn.Module):def __init__(self, num_classes=1000):super(VGG16, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),)self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = x.view(x.size(0), -1)x = self.classifier(x)return x# 创建VGG16模型
model = VGG16(num_classes=1000)
print(model)

代码中的VGG16实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

2.4 ResNet

ResNet50网络构架:

代码实现:

import torch
import torch.nn as nn# 定义残差块
class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)if stride != 1 or in_channels != out_channels:self.downsample = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels))else:self.downsample = Nonedef forward(self, x):identity = xx = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)if self.downsample is not None:identity = self.downsample(identity)x += identityx = self.relu(x)return x# 定义ResNet-50
class ResNet50(nn.Module):def __init__(self, num_classes=1000):super(ResNet50, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(64, 3, stride=1)self.layer2 = self._make_layer(128, 4, stride=2)self.layer3 = self._make_layer(256, 6, stride=2)self.layer4 = self._make_layer(512, 3, stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * 4, num_classes)def _make_layer(self, out_channels, num_blocks, stride):layers = []layers.append(ResidualBlock(self.in_channels, out_channels, stride))self.in_channels = out_channelsfor _ in range(1, num_blocks):layers.append(ResidualBlock(out_channels, out_channels))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x# 创建ResNet-50模型
model = ResNet50(num_classes=1000)
print(model)

代码中的ResNet50实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90411.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue+flask基于知识图谱的抑郁症问答系统

vueflask基于知识图谱的抑郁症问答系统 抑郁症已经成为当今社会刻不容缓需要解决的问题,抑郁症的危害主要有以下几种:1.可导致病人情绪低落:抑郁症的病人长期处于悲观的状态中,感觉不到快乐,总是高兴不起来。2.可导致工…

【软件测试】我的2023面试经验谈

最近行业里有个苦涩的笑话:公司扛过了之前的三年,没扛过摘下最近的一年,真是让人想笑又笑不出来。年前听说政策的变化,大家都满怀希望觉得年后行情一片大好,工作岗位激增,至少能有更多的机会拥抱未来。然而…

warning: remember to run ‘libtool --finish /usr/local/1/php-7.4.29/libs

ubuntu上php7.4.33编译安装完成后警告报错,如下所示 # /usr/local/apache2/apr/build-1/libtool --finish /usr/local/soft/php-7.4.33/libs # vim /etc/ld.so.conf.d/local.conf /usr/local/lib /usr/lib64 # ldconfig 或者安装依赖服务,重新编译 #…

vivo手机录屏在哪里?我来告诉你!(2023最新)

“有人知道vivo手机录屏在哪里吗?刚买了最新款的vivo手机,就是找不到录屏功能在哪,刚好最近需要录屏,很烦躁,有人会吗,求求啦” 随着智能手机的普及,录屏功能逐渐成为用户喜爱的功能之一。vivo…

北航基于openEuler构建工业机器人操作系统,打造“开箱即用”的机器人基础软件平台

北京航空航天大学是国家“双一流”建设高校,以建设扎根中国大地的世界一流大学为发展目标。北京航空航天大学在机器人领域一直处于行业前沿,以其亮眼的成果和优秀的师资力量,成为国内机器人领域的重要参与者和建设者。机器人操作系统是机器人…

“深入解析Maven:安装、创建项目和依赖管理的完全指南“

目录 引言Maven的安装创建Maven项目之前的装备工作Eclipse创建新的Maven项目项目依赖管理 总结 引言 Maven是一个流行的项目管理工具,被广泛用于Java项目的构建、依赖管理和部署。它提供了一种简单而强大的方式来管理项目的各个方面,使开发人员能够更专…

深度学习与计算机相结合:直播实时美颜SDK的创新之路

时下,实时美颜技术就成为了直播主们的得力工具,它可以在直播过程中即时处理视频画面。而支持实时美颜功能的SDK更是推动了这项技术的发展,让直播主和普通用户都能轻松使用美颜功能。 一、美颜技术的演进 早期的美颜技术主要依赖于简单的图…

java Spring Boot yml多环境拆分文件管理优化

上文 java Spring Boot yml多环境配置 我们讲了多环境开发 但这种东西都放在一起 还是非常容易暴露信息的 并且对维护来讲 也不是非常的友好 这里 我们在resources下创建三个文件 分别叫 application-pro.yml application-dev.yml application-test.yml 我们直接将三个环境 转…

2023全球创见者大会|企企通总架构师杨华:基于SRM的电子发票解决方案, 破局企业开票困局

01、2023全球创见者大会 2023年8月8日,金蝶30周年庆典&2023全球创见者大会在深圳国际会展中心隆重举行。现场吸引了4000与会来宾齐聚一堂,超过100位演讲嘉宾组成豪华阵容,举办16场行业峰会,呈现了一场数字化领域备受瞩目…

Redis之删除策略

文章目录 前言一、过期数据二、数据删除策略2.1定时删除2.2惰性删除2.3 定期删除2.4 删除策略比对 三、逐出算法3.1影响数据逐出的相关配置 总结 前言 Redis的常用删除策略 一、过期数据 Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可…

【云原生】Docker 详解(三):Docker 镜像管理基础

Docker 详解(三):Docker 镜像管理基础 1.镜像的概念 镜像可以理解为应用程序的集装箱,而 Docker 用来装卸集装箱。 Docker 镜像含有启动容器所需要的文件系统及其内容,因此,其用于创建并启动容器。 Dock…

解决“先commit再pull”造成的git冲突

一、问题场景 在分支上修改了代码然后commit(没有push),此时再git pull,拉下了别人的修改,但是报错无法merge 二、解决步骤 1.在idea下方工具栏选择git -> log,可以看到版本变化链表,右键…

算法与数据结构(二十四)最优子结构原理和 dp 数组遍历方向

注:此文只在个人总结 labuladong 动态规划框架,仅限于学习交流,版权归原作者所有; 本文是两年前发的 动态规划答疑篇open in new window 的修订版,根据我的不断学习总结以及读者的评论反馈,我给扩展了更多…

【Spring专题】Bean的生命周期流程图

目录 前言阅读指引 流程图一、之前推测的简单流程图(一点点参考)*二、Bean生命周期流程图(根据Spring源码自结)*三、阶段源码流程图(不断更新) 前言 我向来不主张【通过源码】理解业务,因为每个…

OSI七层模型和TCP/IP四层模型

OSI七层模型和TCP/IP四层模型 七层模型(OSI) OSI七层模型(Open Systems Interconnection Reference Model)是一个用于计算机网络体系结构的标准化框架,旨在定义网络通信中不同层次的功能和协议。 各个层次具体如下: 物理层&am…

人流目标跟踪pyqt界面_v5_deepsort

直接上效果图 代码仓库和视频演示b站视频006期: 到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频 代码展示: YOLOv5 DeepSORT介绍 YOLOv5 DeepSORT是一个结合了YOLOv5和DeepSORT算法的目标检测与多目标跟踪系统。让我为您详细解释一…

高并发数据抓取实战:使用HTTP爬虫ip提升抓取速度

又到每天一期学习爬虫的时间了,作为一名专业的爬虫程序员,今天要跟你们分享一个超实用的技巧,就是利用HTTP爬虫ip来提升高并发数据抓取的速度。听起来有点高大上?别担心,我会用通俗易懂的话来和你们说,让你…

Gradle依赖管理:编译时和运行时依赖的区别

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

新的 Python URL 解析漏洞可能导致命令执行攻击

Python URL 解析函数中的一个高严重性安全漏洞已被披露,该漏洞可绕过 blocklist 实现的域或协议过滤方法,导致任意文件读取和命令执行。 CERT 协调中心(CERT/CC)在周五的一份公告中说:当整个 URL 都以空白字符开头时&…

JS 将 json 对象转成字符串并保留格式 - JSON.stringify()

JSON.stringify(value, replacer, space) value:将要序列化成一个 JSON 字符串的值。 replacer(可选):如果该参数是一个函数,则在序列化过程中,被序列化的值的每个属性都会经过该函数的转换和处理&#xf…