直接上效果图
代码仓库和视频演示b站视频006期:
到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频
代码展示:
YOLOv5 DeepSORT介绍
YOLOv5 DeepSORT是一个结合了YOLOv5和DeepSORT算法的目标检测与多目标跟踪系统。让我为您详细解释一下这两个部分:
-
YOLOv5: YOLO(You Only Look Once)是一种实时目标检测算法,YOLOv5是其第五个版本,由Ultralytics开发。与传统的目标检测方法相比,YOLO能够在一次前向传递中直接预测图像中多个目标的类别和位置。YOLOv5在网络结构和训练策略上进行了优化,以实现更快的推理速度和更高的准确率。
-
DeepSORT: DeepSORT(Deep Learning for Real-Time Object Tracking with Prior Information)是一种多目标跟踪算法,结合了深度学习和外观特征的相似度匹配。它能够在视频序列中实时跟踪多个目标,并且能够处理目标的外观变化、遮挡以及目标之间的交叉行为。
YOLOv5 DeepSORT将YOLOv5的目标检测能力与DeepSORT的多目标跟踪能力相结合,从而实现了以下功能:
-
目标检测:使用YOLOv5进行实时目标检测,能够识别图像中的多个不同类型的目标,并为每个目标提供边界框和类别信息。
-
多目标跟踪:利用DeepSORT对检测到的目标进行跟踪,通过结合目标的位置、速度、外观特征等信息,实现在视频序列中对多个目标的连续跟踪。
-
外观特征匹配:DeepSORT使用深度学习模型提取目标的外观特征,并通过相似度匹配来处理目标的遮挡和外观变化,确保准确的多目标跟踪。
-
实时性能:由于YOLOv5本身具有较快的推理速度,结合DeepSORT的实时多目标跟踪能力,YOLOv5 DeepSORT在视频流中能够实现实时目标检测和跟踪。
综合来说,YOLOv5 DeepSORT是一个强大的多目标跟踪系统,通过结合先进的目标检测和跟踪算法,能够在实时视频中准确地检测和跟踪多个目标,具有广泛的应用潜力,包括监控、自动驾驶、人机交互等领域。
自YOLO(You Only Look Once)算法首次提出以来,YOLOv5代表了该系列的第五个主要版本。以下是YOLOv5的发展历程:
-
YOLOv1: YOLOv1是YOLO系列的第一个版本,于2016年发布。它首次引入了“You Only Look Once”的思想,即一次前向传递即可实现目标检测。尽管速度较快,但相对准确率较低,尤其在小目标检测方面表现欠佳。
-
YOLOv2 (YOLO9000): YOLOv2,也称为YOLO9000,于2017年发布。该版本通过引入更多的卷积层和特征金字塔结构,提高了目标检测的精度。它还能够检测更多的类别,但速度略有下降。
-
YOLOv3: 于2018年发布的YOLOv3进一步改进了算法,引入了不同尺度的检测层,从而提升了小目标的检测能力。此外,YOLOv3使用了更强大的骨干网络,如Darknet-53,以增强特征表示能力。
-
YOLOv4: YOLOv4是YOLO系列的一个重要里程碑,于2020年发布。它采用了更大的网络架构,引入了CSPDarknet53骨干网络和各种创新的技术,如PANet、SAM、CIOU等,使得算法在准确率和速度方面都取得了显著的提升。
-
YOLOv5: YOLOv5是YOLO系列的最新版本,由Ultralytics开发并于2020年发布。它着重于优化网络结构和训练策略,以实现更高的推理速度和更好的目标检测精度。YOLOv5引入了轻量级和小型版本,如YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x,以满足不同应用场景的需求。
总体而言,YOLO系列在目标检测领域取得了显著的进展。每个版本都在算法结构、网络设计和性能方面进行了改进,从YOLOv1到YOLOv5,不断提高了目标检测的速度和准确率,使其成为计算机视觉领域中备受关注的算法之一。