《Linux从练气到飞升》No.13 Linux进程状态

🕺作者: 主页

我的专栏
C语言从0到1
探秘C++
数据结构从0到1
探秘Linux
菜鸟刷题集

😘欢迎关注:👍点赞🙌收藏✍️留言

🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要,有问题可在评论区提出,感谢阅读!!!

文章目录

    • 前言
    • 先看看Linux内核源代码怎么说
    • 认识进程状态
      • 新建
      • 阻塞
      • 运行
      • 挂起
      • 终止
    • 进程状态查看命令
    • Linux内核中的进程状态
      • R
      • S
      • D
      • S与D的区别:
      • T
      • X
      • Z
    • R+/S+/T+中的+是什么意思?
        • 僵尸进程危害
      • 孤儿进程
    • 后记

前言

前面我们讲述了进程的基本概念以及如何描述、组织、查看进程,如何使用fork函数创建子进程等内容,本篇将讲述进程的各种状态。

先看看Linux内核源代码怎么说

下面的状态在kernel源代码里的定义:

/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char * const task_state_array[] = {
"R (running)", 		/* 0 */
"S (sleeping)", 	/* 1 */
"D (disk sleep)", 	/* 2 */
"T (stopped)", 		/* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", 		/* 16 */
"Z (zombie)", 		/* 32 */
};

认识进程状态

在我们讲述Linux内核中的进程状态之前,我们先在看一下网上是怎么个样子。

如下:
在这里插入图片描述

我们依次来解释一下它的含义

新建

新建:字面意思,就是创建以后还没有进入运行队列(如fork后)

阻塞

阻塞:我们都知道进程的代码数据在内存中,但是系统还有其他资源,如网卡、磁盘等…所以系统不止有一种队列,不同的队列速度不同,所以就会有时间差,阻塞状态就是CPU等待非CPU资源就绪的状态。

我们来验证一下:
比如有下面代码:

#include<stdio.h>
int main()
{int a = 0;scanf("%d",&a);return 0;
}

这个等待输入的状态就是阻塞状态

运行

比如之前讲的task_struct结构在队列中排队就叫做运行态

挂起

和阻塞有点类似,但是它的区别是挂起状态会将进程的代码和数据换出到磁盘上,而阻塞时的进程代码数据仍在内存

终止

它是XZ两种状态的综合体,具体之后再讲~

进程状态查看命令

ps aux / ps axj 命令

在这里插入图片描述

Linux内核中的进程状态

R

R即表示运行态,并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。

测试代码:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main() {while(1){}return 0;
}

运行结果:
在这里插入图片描述

S

阻塞态,意味着进程在等待事件完成(这里的睡眠有时候也叫做可中断睡眠(interruptible sleep))。

我们都知道进程的代码数据在内存中,但是系统还有其他资源,如网卡、磁盘等…所以系统不止有一种队列,不同的队列速度不同,所以就会有时间差,阻塞状态就是CPU等待非CPU资源就绪的状态。

如下图:
在这里插入图片描述
这并不是真的S状态,为什么这么讲?因为你访问了外设,一旦访问外设的话,这个外设不一定说是立马给你准备好,即便是给你准备好了,其实你也要有一个让他那么获取你数据的过程。然后其实外设就比较慢,要等的话,其中你的进程状态大部分都是 s,所以你看到当前,它的状态就是 s 状态。

D

磁盘休眠状态(Disk sleep)有时候也叫不可中断睡眠状态(uninterruptible sleep),它不可被中断、不可被动唤醒,在这个状态的进程通常会等待IO的结束。

S与D的区别:

  • 它们都是睡眠状态,几乎等价,但是S是可中断的,D不可中断。

那么D的意义是什么?
在操作系统中,当内存不足时,会自动杀死一些不用的进程,但是有些进程一旦终止,便可能造成数据丢失,操作系统就需要知道哪些不能被自动杀死,于是在S的基础上就有了D状态。

T

停止状态(stopped): 可以通过发送 SIGSTOP 信号给进程来停止(T)进程。这个被暂停的进程可以通过发送 SIGCONT 信号让进程继续运行。

要注意和阻塞态的区别,它不用等待资源,比如打断点时。

测试断点:
在这里插入图片描述
在这里插入图片描述
上图中的 t 就是暂停状态。

X

死亡状态(dead):这个状态只是一个返回状态,你不会在任务列表里看到这个状态,它的作用是供给操作系统回收的,因为操作系统不会每时每刻都回收,而是过一段时间回收一次来提高效率。

到现在为止,我们对进程的概念停留在两个方面:

一、必须把自己的可执行程序和代码加载到内存中。

二、操作系统为了管理众多进程,它必须给每个进程都创建对应的PCB。

接下来我们来讲解两种特殊的进程,僵尸进程孤儿进程

Z

僵死状态(Zombies)是一个比较特殊的状态。当进程退出并且父进程(使用wait()系统调用,后面讲)没有读取到子进程退出的返回代码时就会产生僵死(尸)进程

僵死进程会以终止状态保持在进程表中,并且会一直在等待父进程或者操作系统来进行回收。

只要子进程退出,父进程还在运行,但父进程没有读取子进程状态,子进程进入Z状态

我们可以这样理解它,僵尸进程可理解为他们的代码和数据已经被释放掉,但PCB没有释放。

eg:假如有一个恶意程序。运行后就是让子进程退出,但父进程不回收他这样就会导致僵尸问题,让操作系统速度卡顿

验证代码:

#include <stdio.h>
#include <unistd.h>
int main()
{pid_t pid=fork();if(pid<0){perror("fork");return 1;}else if(pid==0){while(1){printf("I am child,pid:%d,ppid:%d\n",getpid(),getppid());sleep(3);break;}exit(0);}else{while(1){printf("I am father,pid:%d,ppid:%d\n",getpid(),getppid());sleep(1);}}printf("you can see me!\n");return 0;
}

运行结果:
在这里插入图片描述
查看状态:
在这里插入图片描述
图中的Z就是僵尸状态,子进程已退出,但父进程还在运行,处于等待回收的被检测状态。

R+/S+/T+中的+是什么意思?

  • 带 + 为前台任务,一旦开始,就会占用bash对话框执行命令就没有任何效果了,而且可以被Ctrl + c 终止。
  • 如果要让它在后台运行,则使用./mycode & [任务号] pid,此时bash就看不到它的运行了,变成了R状态,终止命令:kill -9 pid,暂停命令:kill -19 pid,继续命令:kill -18 pid

僵尸进程危害

进程的退出状态必须被维持下去,因为他要告诉关心它的进程(父进程),你交给我的任务,我办的怎么样了。
可父进程如果一直不读取,那子进程就一直处于Z状态?
是的!

维护退出状态本身就是要用数据维护,也属于进程基本信息,所以保存在task_struct(PCB)中,
换句话说,Z状态一直不退出,PCB一直都要维护?是的

那一个父进程创建了很多子进程,就是不回收,是不是就会造成内存资源的浪费?
是的!因为数据结构对象本身就要占用内存,想想C语言中定义一个结构体变量(对象),是要在内存的某个位置进行开辟空间!

是否会内存泄漏?是的!比如。 C语言写的程序中malloc后的资源不回收,此时导致的僵尸问题就是内存泄漏。

孤儿进程

父进程如果提前退出,那么子进程后退出,进入Z之后,那该如何处理呢?

父进程先退出,子进程就称之为“孤儿进程”

我们知道子进程一般由父进程回收,但是如果是上面这种情况,孤儿进程会被1号init进程领养,当然要由init进程回收喽。

为什么要被领养?

当子进程退出时,父进程已不在,需要由领养进程来进行回收。

验证一下:

#include<stdio.h>
#include <unistd.h>
int main()
{pid_t id = fork();if(id==0){//childwhile(1){}}else{int cnt=5;while(cnt){cnt--;sleep(1);}}return 0;
}
ps axj | head -1 && ps ajx | grep mycodeps axj | head -1 && ps ajx | grep 2194

在这里插入图片描述

在这里插入图片描述

在一些较新的Linux发行版中,引入了--user选项,该选项会创建一个用户级的systemd实例,用于管理用户级别的服务和进程。

这个用户级的systemd实例的进程ID可能会出现在其他进程的PPID字段中,包括孤儿进程。

虽然孤儿进程的父进程通常是1号进程,但在这种情况下,用户级systemd实例的主进程可能会被记录为孤儿进程的父进程。

后记

本篇从操作系统常见的进程状态来引入到Linux内核中的进程状态,他们中的状态有所不同,但是其内核是一样的。比如R表示运行态、S表示阻塞态、D表示磁盘休眠态、 T表示暂停状态、X表示死亡状、 G表示相似状态、他们组合起来,分别对应的阻塞、运行、挂起、终止这些状态。我们还讲述了在我们查看进程状态时看到的加号是什么意思?以及讲述了两种特殊的进程状态,僵尸进程和孤儿进程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91000.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云原生k8s---资源限制、探针

目录 一&#xff1a;资源限制 1、资源限制原因 2、Pod 和 容器 的资源请求和限制 3、CPU 资源单位 4、内存 资源单位 5、事例 &#xff08;1&#xff09;事例一 &#xff08;2&#xff09;事例二 二&#xff1a;重启策略 1、重启策略模式 2、事例 三&#xff1a;探针…

EXCEL按列查找,最终返回该列所需查询序列所对应的值,VLOOKUP函数

EXCEL按列查找&#xff0c;最终返回该列所需查询序列所对应的值 示例&#xff1a;国标行业分类汉字&#xff0c;匹配id 使用VLOOKUP函数 第一参数&#xff1a;拿去查询的值。 第二参数&#xff1a;匹配的数据。 Ps&#xff1a;Sheet1!$C 21 : 21: 21:E 117 &#xff0c;需要…

容器云平台监控告警体系—— Prometheus发送告警机制

1、概述 在Prometheus的架构中告警被划分为两个部分&#xff0c;在Prometheus Server中定义告警规则以及产生告警&#xff0c;Alertmanager组件则用于处理这些由Prometheus产生的告警。本文主要讲解Prometheus发送告警机制也就是在Prometheus Server中定义告警规则和产生告警部…

MFC第二十九天 CView类的分支(以及其派生类的功能)、MFC六大关键技术

文章目录 CView类的分支CEditViewCHtmlViewMainFrm.h CMainFrame 类的接口CMainView .h CListCtrl与CListView的创建原理 CTreeViewCTreeCtrl类简介CTreeCtrl类的原理以及常用功能 MFC六大关键技术视图和带分割栏的框架开发与消息路由CLeftView.cppCRightView.hCRightView.cppC…

【数据库基础】Mysql下载安装及配置

下载 下载地址&#xff1a;https://downloads.mysql.com/archives/community/ 当前最新版本为 8.0版本&#xff0c;可以在Product Version中选择指定版本&#xff0c;在Operating System中选择安装平台&#xff0c;如下 安装 MySQL安装文件分两种 .msi和.zip [外链图片转存失…

css伪元素实现li列表圆点相连+锚点跳转悬浮窗实现

实现效果&#xff1a; html代码&#xff1a; <div class"sidenav"><ul class"nav-text progressbar"><!-- data-target的值对应要跳转的模块的id --><li data-target"module1"><div class"text">锚点…

CHATGPT源码简介与使用指南

CHATGPT源码的基本介绍 CHATGPT源码备受关注&#xff0c;它是一款基于人工智能的聊天机器人&#xff0c;旨在帮助开发者快速搭建自己的聊天机器人&#xff0c;无需编写代码。下面是对CHATGPT搭建源码的详细介绍。 CHATGPT源码的构建和功能 CHATGPT源码是基于Google的自然语言…

超过2个G的视频怎么发给朋友?快来学视频压缩

影响视频体积大小的主要因素无非就是比特率、码率、格式以及视频时长等&#xff0c;当我们的视频文件过大无法通过平台或者软件发送给朋友的时候&#xff0c;就可以借助压缩的方法解决问题&#xff0c;下面就给大家分享几个压缩技巧&#xff0c;一起来看看吧。 方法一&#xff…

mysql滑动窗口案例

获取学科最高分 SELECT DISTINCT name,subject,MAX(score) OVER (PARTITION by subject) as 此学科最高分数 from scores;获取学科的报名人数 select DISTINCT subject,count(name) over (partition by subject) as 报名此学科的人数 from scores; 求学科总分 SELECT DISTI…

LeetCode 38题:外观数列

题目 给定一个正整数 n &#xff0c;输出外观数列的第 n 项。 「外观数列」是一个整数序列&#xff0c;从数字 1 开始&#xff0c;序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定义的数字字符串序列&#xff1a; countAndSay(1) "1"countAnd…

ad+硬件每日学习十个知识点(34)23.8.14 (DCDC详细设计,续流二极管的选择,COMP引脚的环路设计)

文章目录 1.二极管的rrm电压和rms电压有什么不同2.DCDC续流二极管的选择3.充电电容4.COMP引脚的环路设计5.DCDC设计总结6.多路并联7.相位匹配8.工作模式9.低温输出偏离10.电源负载与效率11.降压升压模块 1.二极管的rrm电压和rms电压有什么不同 答&#xff1a; 二极管的 RRM &a…

GIt Squash 多个提交压缩提交

假设你有一个名为 feature 的分支&#xff0c;它包含三个提交&#xff08;A, B, C&#xff09;&#xff0c;并且你想将这三个提交压缩成一个。下面是如何做到这一点的。 首先&#xff0c;找出你要开始压缩的那个最早提交的哈希值。在这个例子中&#xff0c;我们假设 A 是最早的…

Lua学习记录

Lua基础了解 Lua的注释通过 (-- 单行注释&#xff0c;--[[ ]] 多行注释)可以不加&#xff1b; 多个变量赋值&#xff0c;按顺序赋值&#xff0c;没有则为nil&#xff1b; function的简单用法&#xff0c;多个返回值配合多重赋值&#xff0c;以end为结束标志 Lua下标从1开始&…

dingding机器人

“自定义机器人”只支持消息发送&#xff0c;自动回复需要“企业内部机器人” 消息发送 import requests import jsonres requests.post(https://oapi.dingtalk.com/robot/send?access_token036a339axxx,data json.dumps({"text": {"content":"h…

Jenkins-CICD-python/Java包升级与回退

Jenkins- CICD流水线 python/Java代码升级与回退 1、执行思路 1.1、代码升级 jenkins上点击 upgrade和 代码版本号 --${tag} jenkins 推送 代码 和 执行脚本 到目标服务器/opt目录下 执行命令 sh run.sh 代码名称 版本号 upgrade 版本号 来自jenkins的 构建参数中的 标签…

冠达管理:融券卖出交易规则?

融券卖出买卖是指投资者在没有实际持有某只股票的情况下&#xff0c;经过借入该股票并卖出来取得赢利的一种股票买卖方式。融券卖出买卖规矩针对不同市场、不同证券公司之间可能会存在一些差异&#xff0c;但基本的规矩包含如下几个方面。 一、融资融券的资历要求 在进行融券卖…

list模拟实现

list模拟实现 结点类的模拟实现构造函数 迭代器类的模拟实现迭代器类存在的意义迭代器类的模板参数构造函数!运算符重载运算符重载*运算符重载->运算符的重载运算符的重载- -运算符的重载 list模拟实现构造函数拷贝构造函数赋值运算符重载函数与迭代器相关的函数begin与end …

uniapp封装组件,选中后右上角显示对号√样式(通过css实现)

效果&#xff1a; 一、组件封装 1、在项目根目录下创建components文件夹&#xff0c;自定义组件名称&#xff0c;我定义的是xc-button 2、封装组件代码 <template><view class"handle-btn"><view :class"handleIdCode 1 ? select : unSelec…

2023.8.14论文阅读

文章目录 ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation摘要本文方法实验结果 DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection摘要本文方法实验结果 ESPNet: Efficient Spatial Pyramid of Dilated Convo…

一、Kubernetes介绍与集群架构

Kubernetes介绍与集群架构 一、认识容器编排工具 docker machine 主要用于准备docker host现已弃用建议使用docker desktop docker compose Compose 是一个用于定义和运行多容器 Docker 应用程序的工具。使用 Compose&#xff0c;您可以使用 YAML 文件来配置应用程序的服务。…