机器学习-线性回归(对于f(x;w)=w^Tx+b理解)

一、𝑓(𝒙;𝒘) = 𝒘T𝒙的推导

学习线性回归,我们那先要对于线性回归的表达公示,有所认识。

我们先假设空间是一组参数化的线性函数:

其中权重向量𝒘 ∈ R𝐷 和偏置𝑏 ∈ R都是可学习的参数,函数𝑓(𝒙;𝒘,𝑏) ∈ R也称为线性模型。

不失一般性, 在本章后面的描述中我们采用简化的表示方法, 直接用 𝒘和 𝒙 分别表示增广权重向量和增广特征向量. 这样, 线性回归的模型简写为 𝑓(𝒙;𝒘) = 𝒘T𝒙.

这就是题目中提到的线性回归模型的推导由来。

这里为了更好的学习线性回归模型,这里我们普及一下大学时线性代数的一些概念。

二、向量、增广向量、增广权重向量、增广特征向量的概念:

1. 向量(Vector)

定义:
向量是一组有序排列的数,表示空间中的点、数据样本或特定属性的集合。

示例:
假设我们有一个人的身体数据,包括身高和体重,我们可以用一个向量表示:

这个向量表示身高 180 cm,体重 75 kg。

常见类型:

  • 列向量(常用): n×1 维,如上例。
  • 行向量: 1×n,例如: x=[180,75]。

应用:

  • 在机器学习中,向量用来表示数据样本(输入特征)、模型参数等。
  • 在物理中,向量用来表示力、速度等有大小和方向的量。

2. 增广向量(Augmented Vector)

定义:
增广向量是在普通向量的基础上,增加一个额外的常数(通常是 1),以便于在数学计算中引入偏置项(Intercept/Bias)。

示例:
假设我们有一个特征向量:

增广后:

为什么要加 1?
在机器学习的线性回归公式中:

y = w_1 x_1 + w_2 x_2 + b

如果将 b 视为 w_3 并将增广向量 x 扩展为:

y = w_1 x_1 + w_2 x_2 + w_3 ⋅1

这时,增广后的矩阵运算更为简洁,公式变为:

应用:

  • 机器学习: 在回归、分类等问题中,引入偏置项。
  • 计算机视觉: 处理图像坐标变换(如平移操作)。
  • 信号处理: 统一矩阵运算,减少额外计算。

3. 增广权重向量(Augmented Weight Vector)

定义:
增广权重向量是在普通权重向量的基础上,增加一个额外的偏置项 b,以与增广输入向量匹配。

示例:
假设我们有普通的权重向量:

增广后:

这样,使用增广权重向量,计算目标值时,可以与增广向量配合使用:

应用:

  • 机器学习: 简化计算,避免单独处理偏置项。
  • 神经网络: 统一偏置与权重的管理,提高计算效率。

4. 增广特征向量(Augmented Eigenvector)

定义:
增广特征向量是在线性代数的特征值分解问题中,在特征向量的基础上,附加额外的约束条件或辅助信息,以便解决某些特定问题。

特征向量的基本公式:

给定矩阵 A,特征向量满足:

Av=λv

如果原始特征向量是:

增广后:

为什么要增广?

  • 在控制系统、信号处理等领域,增广特征向量可以用于增加额外信息,如系统约束或观测量。
  • 在奇异值分解(SVD)、PCA等方法中,增加维度可以提高数值稳定性或处理特殊边界条件。

应用:

  • 控制工程:增广状态向量来处理观测噪声。
  • 计算机视觉:在3D变换中加入齐次坐标(如在2D坐标 (x,y)增广为 (x,y,1))。

5. 总结:区别与联系

名称定义增加的元素作用例子
向量一组数,表示数据或坐标描述特征或数据点[180,75][180, 75]
增广向量在向量后加 1,使计算更方便1统一计算偏置项[180,75,1][180, 75, 1]
增广权重向量在权重后加偏置项 bb 以匹配增广向量1使得矩阵运算统一,减少额外处理[0.5,1.2,20][0.5, 1.2, 20]
增广特征向量在特征向量后加常数或约束1 或更多处理约束问题、增加系统观测能力[2,3,1][2, 3, 1]

它们之间的联系:

  • 增广向量和增广权重向量通常一起使用,用于机器学习中的线性模型。
  • 增广特征向量更偏向于线性代数的特征值分解和矩阵分析,并不直接用于机器学习的建模中。

三、这里思考一个问题:空间可以由线性模型表示吗?

答案是yes,空间可以在一定条件下用线性模型来表示,特别是在欧几里得空间特征空间中,线性模型可以用于描述点、方向、平面和超平面等几何对象。

1. 线性模型的基本形式

线性模型的一般数学形式是:

在向量形式下可以表示为:

其中:

  • x 表示输入向量,描述空间中的点或特征。
  • w 是权重向量,表示空间中的方向或特定超平面的法向量。
  • b 是偏置,表示超平面与原点的距离。

2. 用线性模型表示几何空间的例子

例 1:平面在三维空间中的表示

假设我们在三维空间中有一个平面,其方程可以写成:

2x+3y−z+5=0

将其改写成线性模型的形式:

z=2x+3y+5z

这实际上是一个线性回归模型,其中:

  • x1=x, x2=y,y=z。
  • 权重 w=[2,3]。
  • 偏置 b=5。

解释:

  • 这个线性方程表示三维空间中的一个平面,线性模型可以表示任意方向的平面。
  • 平面的法向量 (2,3,−1)代表其朝向。
例 2:二维平面上的直线

假设我们要表示一个 2D 平面上的直线:

y=4x+2

这里:

  • x 是输入变量,y 是输出。
  • 斜率 w1=4,偏置 b=2。

这条直线可以看作是一个 2D 空间中的线性模型,描述输入 x 和输出 y 之间的线性关系。

解释:

  • 该直线分割了平面空间,表示空间中的一个一维子空间。
  • 例如,在分类问题中,它可以用来将数据点分成两个类别。
例 3:超平面在高维空间中的表示(机器学习中的决策边界)

在机器学习中,支持向量机(SVM)和线性回归模型使用超平面来表示数据分布。例如,假设在 3D 空间中,数据点属于两个类别,我们可以用一个线性模型来区分它们:

w1x1+w2x2+w3x3+b=0

这个方程描述的是三维空间中的一个超平面,它可以将空间划分成两部分。

解释:

  • 在 n 维空间中,线性方程表示的是一个 (n−1)维的超平面。
  • 例如,在二维空间中,线性方程表示一条直线,在三维空间中,表示一个平面。
例 4:主成分分析(PCA)用于空间降维

在高维空间中,主成分分析(PCA)是一种常见的线性方法,用于找到数据的最佳投影方向。例如,给定一组三维点 (x1,x2,x3),PCA 试图找到一个最佳的线性方向来表示这些点,从而将其降维到一个平面或直线。

PCA 线性模型通常可以写作:

其中:

  • W 是投影矩阵,定义了降维后的新坐标轴。
  • 这个模型可以找到数据所在的低维子空间。

3. 线性模型表示空间的局限性

尽管线性模型可以表示许多几何对象,但也存在局限:

  • 无法表示非线性空间结构: 如果数据存在曲面或复杂的非线性关系,线性模型无法准确表示。
  • 只能描述平直的结构: 例如圆、球等非线性空间无法用简单的线性方程来表示。
  • 需要特征变换: 为了处理复杂空间,通常需要使用特征工程(如多项式特征扩展)或非线性映射(如核方法)。

4. 非线性空间如何用线性模型处理?

如果数据或空间具有非线性特征,可以通过以下方式将其转换为线性模型:

  1. 特征变换(Feature Engineering)

    通过增加维度,空间变得线性。

  2. 核方法(Kernel Methods)

    • 在支持向量机(SVM)中,核函数(如高斯核)将数据映射到高维线性可分空间。
  3. 神经网络(Deep Learning)

    • 通过多层非线性激活函数,神经网络可以近似任意复杂的空间映射。

5. 结论

  • 线性模型可以表示许多常见的空间,如直线、平面和高维超平面。
  • 对于更复杂的空间结构,需要进行特征变换或使用非线性方法来补充线性模型的局限性。
  • 在机器学习、数据分析和几何处理中,线性模型是非常重要的基础工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/9110.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中文输入法方案

使用了三年的自然码双拼,毫无疑问是推荐使用双拼输入法。 三年积累下来的习惯是: 1 自然码方案 2 空格出字 字母选字 直到如今,想要做出改变,是因为这样的方案带来的痛点: 1 使用空格出字就无法使用辅助码&#…

【东雪莲病毒|罕见病毒|Traitor Virus】

恶意程序分析:东雪莲病毒(Traitor Virus) 项目地址:东雪莲病毒|罕见病毒|Traitor Virus(Github) 代码效果展示 一、代码概述 这是一款使用Python编写的恶意程序。在获取管理员权限后,会对计算机系统执行一系列破坏性…

《Java核心技术 卷II》日期和时间API的时间线

日期和时间API Java1.0的Date类过于简单,大部分被弃用。 Java1.1引入Calendar类,但没有处理诸如闰秒之类的问题。 Java 8引入java.time.API,修正过去缺陷。 时间线 1967年,铯133原子的特性推导出了秒的精确定义。之后由原子钟网络…

IO进程寒假作业DAY6

请使用互斥锁 和 信号量分别实现5个线程之间的同步 使用互斥锁 #include <stdio.h> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include &…

mybatis(112/134)

多对一 第一种方法&#xff1a; 一的表参数设置&#xff1a; <association property"clazz" javaType"Clazz"> <id property"cid" column"cid"/> <result property"cname" column"cname"/> <…

读书笔记:《华为突围ERP封锁全纪实》

文章背景&#xff1a; 2019年5月&#xff0c;华为被美国制裁&#xff0c;其ERP系统面临断供风险。ERP系统是企业核心管理软件&#xff0c;一旦中断&#xff0c;华为的全球业务将陷入瘫痪。面对这一生死存亡的危机&#xff0c;华为启动了“突围”计划&#xff0c;历经数年艰苦奋…

【C++】设计模式详解:单例模式

文章目录 Ⅰ. 设计一个类&#xff0c;不允许被拷贝Ⅱ. 请设计一个类&#xff0c;只能在堆上创建对象Ⅲ. 请设计一个类&#xff0c;只能在栈上创建对象Ⅳ. 请设计一个类&#xff0c;不能被继承Ⅴ. 请设计一个类&#xff0c;只能创建一个对象&#xff08;单例模式&#xff09;&am…

K8s运维管理平台 - KubeSphere 3.x 和4.x 使用分析:功能较强,UI美观

目录标题 Lic使用感受优点&#xff1a;优化点&#xff1a; 实操首页项目 | 应用负载 | 配置 | 定制资源定义存储监控告警集群设置 **KubeSphere 3.x** 和 **4.x**1. **架构变化**&#xff1a;2. **多集群管理**&#xff1a;3. **增强的 DevOps 功能**&#xff1a;4. **监控与日…

SpringBoot或SpringAI对接DeekSeek大模型

今日除夕夜&#xff0c;deepseek可是出尽了风头&#xff0c;但是我看网上还没有这方面的内容对接&#xff0c;官网也并没有&#xff0c;故而本次对接是为了完成这个空缺 我看很多的博客内容是流式请求虽然返回时正常的&#xff0c;但是他并不是实时返回&#xff0c;而是全部响应…

低代码系统-产品架构案例介绍、明道云(十一)

明道云HAP-超级应用平台(Hyper Application Platform)&#xff0c;其实就是企业级应用平台&#xff0c;跟微搭类似。 通过自设计底层架构&#xff0c;兼容各种平台&#xff0c;使用低代码做到应用搭建、应用运维。 企业级应用平台最大的特点就是隐藏在冰山下的功能很深&#xf…

文献阅读 250128-Tropical forests are approaching critical temperature thresholds

Tropical forests are approaching critical temperature thresholds 来自 <Tropical forests are approaching critical temperature thresholds | Nature> 热带森林正在接近临界温度阈值 ## Abstract: The critical temperature beyond which photosynthetic machinery…

判断子序列

hello 大家好&#xff01;今天开写一个新章节&#xff0c;每一天一道算法题。让我们一起来学习算法思维吧&#xff01; function isSubsequence(s, t) {// 初始化两个指针&#xff0c;分别指向字符串 s 和 t 的起始位置let i 0; let j 0; // 当两个指针都未超出对应字符串的长…

您与此网站之间建立的连接不安全

网站建立好后&#xff0c;用360浏览器打开后地址栏有一个灰色小锁打着红色叉点击后显示“您与此网站之间建立的连接不安全”“请勿在此网站上输入任何敏感信息&#xff08;例如密码或信用卡信息&#xff09;&#xff0c;因为攻击者可能会盗取这些信息。” 出现这个提示的主要原…

解读隐私保护工具 Fluidkey:如何畅游链上世界而不暴露地址?

作者&#xff1a;Techub 独家解读 撰文&#xff1a;Tia&#xff0c;Techub News 隐私不只是个人权利的象征&#xff0c;更是我们迈向透明、信任未来的重要过渡桥梁。如果你还未意识到隐私的重要性&#xff0c;推荐阅读 KeyMapDAO 的文章《「被出卖的自由」&#xff1a;我到底该…

uniapp 地图添加,删除,编辑标记,在地图中根据屏幕范围中呈现标记

前言 小程序实现新功能&#xff0c;在地图中选取位置添加标记&#xff0c;并在地图中呈现添加的标记&#xff0c;&#xff08;呈现的是根据当前屏幕范围内的标记&#xff09;&#xff0c;并对标记进行分享&#xff0c;删除&#xff0c;编辑&#xff0c;导航&#xff0c;并从分…

DPO、KTO、DiffusionDPO

DPO&#xff08;Direct Preference Optimization&#xff09; 原文来自于 https://arxiv.org/pdf/2305.18290&#xff0c; Bradley-Terry (BT)模型&#xff0c;假设人的喜欢遵循下面的公式&#xff0c;给定x&#xff0c;得到 y 1 y_1 y1​和 y 2 y_2 y2​分别遵循以下关系&am…

Android Studio安装配置

一、注意事项 想做安卓app和开发板通信&#xff0c;踩了大坑&#xff0c;Android 开发不是下载了就能直接开发的&#xff0c;对于新手需要注意的如下&#xff1a; 1、Android Studio版本&#xff0c;根据自己的Android Studio版本对应决定了你所兼容的AGP&#xff08;Android…

GPU上没程序在跑但是显存被占用

原因&#xff1a;存在僵尸线程&#xff0c;运行完但是没有释放内存 查看僵尸线程 fuser -v /dev/nvidia*关闭僵尸线程 pkill -9 -u 用户名 程序名 举例&#xff1a;pkill -9 -u grs python参考&#xff1a;https://blog.csdn.net/qq_40206371/article/details/143798866

JAVA实战开源项目:蜗牛兼职平台(Vue+SpringBoot) 附源码

本文项目编号 T 034 &#xff0c;文末自助获取源码 \color{red}{T034&#xff0c;文末自助获取源码} T034&#xff0c;文末自助获取源码 目录 一、系统介绍1.1 平台架构1.2 管理后台1.3 用户网页端1.4 技术特点 二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景…

DeepSeek LLM解读

背景&#xff1a; 量化巨头幻方探索AGI&#xff08;通用人工智能&#xff09;新组织“深度求索”在成立半年后&#xff0c;发布的第一代大模型DeepSeek试用地址&#xff1a;DeepSeek &#xff0c;免费商用&#xff0c;完全开源。作为一家隐形的AI巨头&#xff0c;幻方拥有1万枚…