OPENCV C++(十二)模板匹配

正常模板匹配函数

matchTemplate(img, templatee, resultMat, 0);//模板匹配

 这里0代表的是方法,一般默认为0就ok 

img是输入图像 templatee是模板 resultmat是输出

1、cv::TM_SQDIFF:该方法使用平方差进行匹配,因此最佳的匹配结果在结果为0处,值越大匹配结果越差。2、cv::TM_SQDIFF_NORMED:该方法使用归一化的平方差进行匹配,最佳匹配也在结果为0处。3、cv::TM_CCORR:相关性匹配方法,该方法使用源图像与模板图像的卷积结果进行匹配,因此,最佳匹配位置在值最大处,值越小匹配结果越差。4、cv::TM_CCORR_NORMED:归一化的相关性匹配方法,与相关性匹配方法类似,最佳匹配位置也是在值最大处。5、cv::TM_CCOEFF:相关性系数匹配方法,该方法使用源图像与其均值的差、模板与其均值的差二者之间的相关性进行匹配,最佳匹配结果在值等于1处,最差匹配结果在值等于-1处,值等于0直接表示二者不相关。6、cv::TM_CCOEFF_NORMED:归一化的相关性系数匹配方法,正值表示匹配的结果较好,负值则表示匹配的效果较差,也是值越大,匹配效果也好。

对于输出的说明:

就是说result图像中的每一个点的值代表了一次相似度比较结果。

 如图可知,模板在待测图像上每次在横向或是纵向上移动一个像素,并作一次比较计算,由此,横向比较W-w+1次,纵向比较H-h+1次,从而得到一个(W-w+1)×(H-h+1)维的结果矩阵,result即是用图像来表示这样的矩阵,因而图像result的大小为(W-w+1)×(H-h+1)。匹配结果图像与原图像之间的大小关系,他们之间差了一个模板大小。

对输出值的归一化

 

normalize(resultMat, resultMat, 0, 1, NORM_MINMAX, -1, Mat());//归一化

找出最佳匹配的位置:

	double minVal; double maxVal; Point minLoc; Point maxLoc;Point matchLoc;minMaxLoc(resultMat, &minVal, &maxVal, &minLoc, &maxLoc, Mat());matchLoc = minLoc;

 我们这里选择了最小值的位置,因为我们选的第一种方法也就是值越小越好,其他方法有可能是选最大的位置!!

在图像画出匹配最佳:
 

	Mat dispmat;img.copyTo(dispmat);rectangle(dispmat, matchLoc, Point(matchLoc.x + templatee.cols, matchLoc.y + templatee.rows),CV_RGB(0,255,0), 2, 8, 0);imshow("dispmat", dispmat);waitKey(0);destroyAllWindows();

结果显示



利用opencv自带选取roi+模板匹配,进行简单的人脸追踪识别 

选取roi

	if (cnt == 0) {Rect2d r;r = selectROI(frame, true);tempMat = frame(r);tempMat.copyTo(refMat);destroyAllWindows();}

 完整代码:
 

	VideoCapture cap(0);Mat frame;Mat tempMat;Mat refMat;Mat dispMat;Mat resultMat;int cnt = 0;while (1) {cap >> frame;if (cnt == 0) {Rect2d r;r = selectROI(frame, true);tempMat = frame(r);tempMat.copyTo(refMat);destroyAllWindows();}imshow("template", refMat);int match_method = 0;matchTemplate(frame, refMat, resultMat, match_method);normalize(resultMat, resultMat, 0, 1, NORM_MINMAX, -1, Mat());double minVal; double maxVal; Point minLoc; Point maxLoc;Point matchLoc;minMaxLoc(resultMat, &minVal, &maxVal, &minLoc, &maxLoc, Mat());if (match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED){matchLoc = minLoc;}else{matchLoc = maxLoc;}frame.copyTo(dispMat);rectangle(dispMat, matchLoc, Point(matchLoc.x + refMat.cols, matchLoc.y + refMat.rows), Scalar::all(0), 2, 8, 0);cnt++;//imshow("template", refMat);imshow("dispMat", dispMat);waitKey(30);

至此opencv基础学习到此结束 后期学习一些进阶自学内容。

************************************************----***********************************************************

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91852.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Java-SE-第三十八章》之注解

前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页:KC老衲爱尼姑的博客主页 博主的github,平常所写代码皆在于此 共勉:talk is cheap, show me the code 作者是爪哇岛的新手,水平很有限&…

【vue3+xlxs+xlsx-style-vite】vue3项目中使用xlsx插件实现Excel表格的导出和解析,已实现

在vue3项目中使用xlsx插件实现Excel表格的导出和解析 1、xlsx插件包官方 xlsx插件包官方 2、FileReader官方文档:FileReader官方文档 安装xlsx和xlsx-style-vite、file-saver npm install xlsx npm install xlsx-style-vite npm install file-saverpackage.json中查…

以商业大数据技术助力数据合规流通体系建立,合合信息参编《数据经纪从业人员评价规范》团标

经国务院批准,由北京市人民政府、国家发展和改革委员会、工业和信息化部、商务部、国家互联网信息办公室、中国科学技术协会共同主办的2023 全球数字经济大会于近期隆重召开。由数交数据经纪(深圳)有限公司为主要发起单位,合合信息…

【openwrt学习笔记】dnsmasq源码阅读

目录 一、DHCP(Dynamic Host Configuration Protocol)1.1 前置知识1.2 参考链接1.3 IP地址分配代码分析rfc2131.cdhcp-common.cdhcp.c 1.4 几个小问题1.4.1 连续IP模式(sequential_ip)1.4.2 重新连接使用IP地址1.4.3 续约租期1.4.4 不同的MAC地址分配到相…

3. 爬取自己CSDN博客列表(自动方式)(分页查询)(网站反爬虫策略,需要在代码中添加合适的请求头User-Agent,否则response返回空)

文章目录 步骤打开谷歌浏览器输入网址按F12进入调试界面点击网络,清除历史消息按F5刷新页面找到接口(community/home-api/v1/get-business-list)接口解读 撰写代码获取博客列表先明确返回信息格式json字段解读 Apipost测试接口编写python代码…

对应分析介绍及SPSS案例分析

在开展统计分析的过程中,分类变量(定序和定类变量)是我们研究的一个重点。通常我们分析分类变量间关系时,最常用的分析方法是卡方检验,其次是逻辑回归和对数线性模型等。 如果类别变量的分类较少,我们可以…

Clickhouse基于文件复制写入

背景 目前clickhouse社区对于数据的写入主要基于文件本地表、分布式表方式为主,但缺乏大批量快速写入场景下的数据写入方式,本文提供了一种基于clickhouse local 客户端工具分布式处理hdfs数据表文件,并将clickhouse以文件复制的方式完成写入…

selenium.webdriver Python爬虫教程

文章目录 selenium安装和使用 selenium安装和使用 pip install selenium 下载对应的浏览器驱动 实例化浏览器 from selenium import webdriverbrowser webdriver.Chrome()元素定位 控制浏览器

浪潮信息赵帅:多元算力时代 开源开放的OpenBMC成为服务器管理优先解

“多元算力时代下,大规模的异构服务器设备面临多种处理器架构、多种设备协议、不同管理芯片兼容的系统化设计挑战,管理固件也迎来新的变革。开源开放的OpenBMC,以创新的分层解耦软件架构,兼容不同处理器架构、算力平台和管理芯片&…

JS导出复杂多级表头的Excel

使用方式 1、安装依赖 npm install xlsx-js-style2、复制代码文件exportExcel.js至工程 https://github.com/EnthuDai/export-excel-in-one-line 3、在引入excel.js后调用 Excel.export(columns, dataSource, 导出文件名)4、代码demo 5、效果 页面excel 适用范围 对于使…

视频汇聚平台EasyCVR视频监控播放平台WebRTC流地址无法播放的问题解决方案

开源EasyDarwin视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多…

excel入门

上下左右移动 enter:换行,向下移动 shiftenter:向上移动 tab:向右移动 shifttab:向左移动 合并居中操作 开始-》合并居中 CtrlM 内容过长盖过了下一个单元格内容 双击列与列之间线 同时修改多行或者多列宽度或者高度 修改单行高度宽度 选中某一行拉取指定高…

三维直方图

三维直方图更直观,借助matlab的bar3,可以绘制三维直方图。 clc; clearvars; cimread(lena.jpg); width 0.8; %默认值是0.8,根据需要修改。 % hbar3(c,width,r); hbar3(c); set(h,EdgeColor,r) % set(h,facecolor,b) % set(h(1),facecolor…

LeetCode150道面试经典题--判断子序列(简单)

1.题目 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序…

Android布局【TableLayout】

文章目录 说明常见属性子控件设置属性 项目结构主要代码 说明 TableLayout也称为表格布局 常见属性 android:collapseColumns:设置需要被隐藏的列的序列号,从0开始android:stretchColumns:设置允许被拉伸的列的列序号,从0开始&…

自从学了C++之后,小雅兰就有对象了!!!(类与对象)(中)——“C++”

各位CSDN的uu们好呀,今天是小雅兰来到CSDN创作的第256天啦,是一个极具纪念意义的日子,在这个神圣的日子里,也不影响小雅兰继续创作博客!!!下面,让我们进入西嘎嘎类和对象的世界吧&am…

java面试强基(16)

目录 clone方法的保护机制 Java中由SubString方法是否会引起内存泄漏? Java中提供了哪两种用于多态的机制? 程序计数器(线程私有) 如何判断对象是否是垃圾? clone方法的保护机制 clone0方法的保护机制在Object中是被声明为 protected的。以User…

数字化车间mes生产执行管理系统

数字化车间mes是一款基于B/S结构的生产执行管理系统,主要目的是为中小企业提供了高效率、低成本、通用性强的一个MES系统解决方案,能够实时监控当前完成进度。 功能简介: 生产管理 大屏展示:可以从大屏展示页面看到任工序…

Redis专题-队列

Redis专题-队列 首先,想一想 Redis 适合做消息队列吗? 1、消息队列的消息存取需求是什么?redis中的解决方案是什么? 无非就是下面这几点: 0、数据可以顺序读取 1、支持阻塞等待拉取消息 2、支持发布/订阅模式 3、重…

Java自学网站推荐,专业教学快速提升

Java自学网站可以是学习Java的有用资源之一。它们通常提供了丰富的教学材料、在线课程、编程练习和实例项目,帮助初学者系统地学习Java编程语言和相关技术。 动力节点是一家专业的Java培训机构,他们提供在线视频学习平台,你可以参考他们的官方…