机器学习理论笔记(一):初识机器学习

文章目录

  • 1 前言:蓝色是天的机器学习笔记专栏
    • 1.1 专栏初衷与定位
    • 1.2 本文主要内容
  • 2 机器学习的定义
    • 2.1 机器学习的本质
    • 2.2 机器学习的分类
  • 3 机器学习的基本术语
  • 4 探索"没有免费的午餐"定理(NFL)
  • 5 结语

在这里插入图片描述

1 前言:蓝色是天的机器学习笔记专栏

尊敬的读者们,大家好!欢迎来到我的全新专栏:《蓝色是天的机器学习笔记》。我感到无比兴奋,能够在这里与各位分享我对机器学习的热爱与探索。这个专栏将成为我记录机器学习知识、交流心得的温馨角落,而这篇文章正是专栏的第一步。

1.1 专栏初衷与定位

作为机器学习领域的狂热爱好者,我一直坚信知识的分享与传播是推动技术进步的关键。《蓝色是天的机器学习笔记》专栏将会是一个持续更新的平台,我将在这里分享我对机器学习领域的理解、学习过程中的心得体会以及实践经验。我希望通过这个专栏,能够与志同道合的你一起探讨机器学习的种种奥秘,共同成长、共同进步。

1.2 本文主要内容

  1. 机器学习的定义与意义
    在机器学习的世界里,计算机不再是被动地执行预设的指令,而是能够通过数据和经验来自主学习、优化性能。机器学习已经渗透到我们生活的方方面面,从智能助理到推荐算法,无不展现出其强大的应用潜力。在本文中,我将为大家详细介绍机器学习的定义及其在现代科技中的重要意义。

  2. 机器学习的基本术语
    在踏入机器学习的领域之前,了解一些基本术语是非常必要的。本文将为大家介绍一些常用的机器学习术语,如监督学习、无监督学习、特征工程等,帮助大家建立起对这些概念的初步认识,为后续的学习打下坚实基础。

  3. 探索NFL理论
    NFL理论,即“没有免费的午餐”定理,是机器学习领域的一项重要原则。它告诉我们,并没有一种算法能够在所有情况下都表现最优,不同的问题需要不同的方法。在本文中,我将解析这一理论的内涵,并探讨其在实际问题中的应用意义。

2 机器学习的定义

在当今信息爆炸的时代,我们每天都在与各种数据打交道。从社交媒体的点赞、购物网站的推荐,到医疗诊断和智能驾驶,我们的世界越来越多地受到数据和技术的影响。但是,如何从这些海量的数据中提取有价值的信息,并做出智能决策,却是一个充满挑战的问题。在这个背景下,机器学习应运而生,为计算机赋予了像人类一样学习和适应的能力。

2.1 机器学习的本质

机器学习是一门让计算机从经验中学习,从而改进性能的学科。它的核心理念可以用一个简单的类比来理解:就像我们根据过去的经验来预测明天的天气,或者在市场上挑选出一个好瓜,机器学习让计算机能够从历史数据中获取“经验”,并通过学习这些经验生成算法模型,从而在面对新的情况时做出有效的判断。

Mitchell的形式化定义

Tom Mitchell,在他的经典教材《机器学习》中,给出了机器学习的形式化定义,它将这一概念表达得更加准确和具体。他将机器学习看作是一个性能改善的过程,通过历史数据的学习来提高计算机程序在某个任务类上的性能。形式化定义中,他引入了三个关键要素:

  • P(性能):表示计算机程序在某个任务类T上的表现。这可以是分类准确率、回归误差等,具体取决于任务的性质。
  • T(任务类):指计算机程序所要解决的问题类型。这可以是图像识别、自然语言处理等多种任务。
  • E(经验):代表历史的数据集,即过去的经验。这些数据将用于训练计算机程序,使其在任务T上表现更好。

根据Mitchell的定义,若计算机程序通过学习经验E,使得在任务T上的性能P得到了改善,那么就可以说该程序对E进行了学习。

2.2 机器学习的分类

机器学习可以分为多个子领域,其中包括但不限于监督学习、无监督学习和强化学习。在监督学习中,计算机从带有标签的数据中学习,以便能够对新数据进行分类或回归。而在无监督学习中,计算机从未标记的数据中发现模式和结构,用于聚类、降维等任务。强化学习则是让计算机在与环境互动的过程中,通过试错来学习最优策略。

3 机器学习的基本术语

在机器学习领域,有许多基本术语用于描述数据、模型以及学习过程,这些术语帮助我们更准确地理解和交流。让我们一起深入探讨这些关键概念。

数据的基本组成
当我们希望让计算机学习的时候,我们首先需要一组数据来作为学习的基础。以西瓜数据为例,每一个记录表示一个西瓜的特征信息:

  • 数据集:所有记录的集合称为数据集,它是我们学习的源数据。
  • 实例/样本:每一条记录被称为一个实例或样本,它是数据集中的一个单独数据点。
  • 特征/属性:数据集中的每个单独特点,比如“色泽”或“敲声”,被称为特征或属性。
  • 特征向量:一条记录可以表示为一个特征向量,它是一个在坐标轴上的点,其中每个维度对应一个特征。

训练与测试
在机器学习中,我们需要使用一部分数据来训练模型,然后使用另一部分数据来测试模型的性能:

  • 训练样本:用于训练模型的数据样本被称为训练样本,这些样本有标记信息。
  • 训练集:所有训练样本的集合被称为训练集,它是用于训练模型的数据集。
  • 测试样本:用于测试模型性能的数据样本被称为测试样本,这些样本通常没有标记信息。
  • 测试集:所有测试样本的集合被称为测试集,它是用于评估模型性能的数据集。

泛化能力与预测
一个好的机器学习模型应该具有对新数据的适应能力,这就是泛化能力:

  • 泛化能力:模型在训练集上的学习成果能够应用到未见过的数据上,这就是模型的泛化能力。

问题类型与学习任务
机器学习可以应用于不同类型的问题,这取决于预测值的性质:

  • 分类:当预测值是离散值(如好瓜/差瓜)时,这个问题被称为分类。它可以分为二分类和多分类。
  • 回归:当预测值是连续值(如人口数量)时,这个问题被称为回归。

监督学习与无监督学习
根据训练数据是否有标记信息,我们可以将机器学习任务划分为两大类:

  • 监督学习:训练数据带有标记信息,包括分类和回归问题。
  • 无监督学习:训练数据没有标记信息,包括聚类和关联规则等任务。

4 探索"没有免费的午餐"定理(NFL)

在机器学习领域,有一条被广泛引用的定理,它以简洁的表述揭示了一种普遍的现实:没有免费的午餐(No Free Lunch, NFL)。这一定理的精髓,不仅在机器学习领域有着深刻的应用,同样也适用于我们的个人发展之路。请大家阅读的之前的一篇博文:机器学习中的人生启示:“没有免费的午餐”定理(NFL)的个人发展之道

NFL定理(No Free Lunch Theorem)是机器学习领域的一条基本定理,它通过数学推导提供了深刻的见解。该定理的核心思想是,对于所有问题和所有潜在的学习算法,它们在平均情况下的性能是相同的。这意味着,不存在一种算法可以在所有问题上表现最优。

具体地说,假设我们有一个学习算法集合,表示为A = {A1, A2, … , An},这些算法被应用于不同的问题集合D = {D1, D2, … , Dm}。则NFL定理给出了以下结论:

  1. 对于特定的问题Di,在某个算法Aj表现良好的情况下,必然存在其他问题Dk,其中算法Aj则表现相对较差。
  2. 对于任何算法的平均性能,它们在所有问题上的性能都是相同的,即在所有问题上的期望性能相等。

在这里插入图片描述
为了更好地理解NFL定理,我们可以通过公式推导进行具体分析。
假设我们有两个算法,算法a和算法b,它们分别用于假设产生和随机猜测。考虑一个离散的样本空间X和假设空间H。我们定义P(h|X,a)为算法a基于训练数据X产生假设h的概率,并假设我们希望找到一个真实目标函数f。那么,算法a在训练集之外的误差可以表示为:
在这里插入图片描述

通过公式推导,我们可以清楚地看到NFL定理的数学基础,并理解其中的含义。它提醒我们,没有一种算法可以适用于所有问题,因为问题的特征与算法之间存在着固有的联系。

在个人发展中,我们可以将NFL定理的思想引申到职业选择和发展上。每个人都有自己独特的兴趣、技能和适应能力,没有一种职业或领域适用于所有人。我们需要探索自己的优势并找到适合自己的机会和路径。

无论是在机器学习还是个人发展中,我们都应该理解和接受NFL定理的启示,并通过探索多样的领域来寻找适合自己的机会。这样,我们才能充分发展自己的潜力,并在个人发展中取得成功。让我们一起超越NFL定理的界限,开启个人发展的多彩之旅。

5 结语

在探索机器学习的世界,我们深入研究了"没有免费的午餐"定理(NFL)的重要性,不仅为机器学习带来了新的思考,也为个人发展指明了前进的方向。就像每一种算法在不同问题上都有其优势一样,每个人在人生舞台上也都有独特的闪光点。在机器学习中,我们以数据为驱动,以模型为导航,不断追求优化与创新;在人生中,我们以努力为动力,以梦想为目标,坚定前行,不断突破。无论是解决复杂问题还是实现个人价值,坚持不懈的追求和积极的态度都是成功的关键。

在这篇博文中,我们深入探讨了机器学习的基本术语,剖析了"没有免费的午餐"定理在机器学习和个人发展中的内涵。无论是在选择合适的算法,还是在面对个人发展中的差距感,我们都可以从NFL定理中汲取智慧。正如机器学习中每个问题都需要独特的算法一样,每个人也都有属于自己的人生之路。从学习中汲取经验,不断成长,逐步迈向成功的道路,正是我们共同的努力方向。

让我们在机器学习的探索中,勇往直前;在人生的旅程中,秉持NFL定理的智慧,不断超越自我,创造更加美好的明天。无论是探索科技的边界还是实现个人的梦想,我们都应该坚信:在知识的指引下,没有什么是无法实现的。让我们共同迎接未来的挑战,为机器学习的发展和人生的进步贡献力量,书写属于自己的精彩篇章。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92300.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

隧道人员定位方案

针对隧道环境的人员定位方案,UWB定位技术同样可以提供高精度和可靠的定位服务。以下是一个可行的方案: 部署基站网络:在隧道内建立一个基站网络,基站需要均匀分布在各个关键位置,以确保全方位的覆盖。由于隧道的特殊环…

一、Dubbo 简介与架构

一、Dubbo 简介与架构 1.1 应用架构演进过程 单体应用:JEE、MVC分布式应用:SOA、微服务化 1.2 Dubbo 简介一种分布式 RPC 框架,对专业知识(序列化/反序列化、网络、多线程、设计模式、性能优化等)进行了更高层的抽象和…

SpringBoot集成Redis及Redis使用方法

目录 应用背景 Redis简介 更新问题 一:环境配置 1.1: 在pom.xml文件中添加依赖 1.2:配置SpringBoot核心配置文件application.properties 二:在Config文件夹中创建RedisConfig配置文件类 2.1:RedisTemplate中的几个角色&am…

基于安防监控EasyCVR视频汇聚融合技术的运输管理系统的分析

一、项目背景 近年来,随着物流行业迅速发展,物流运输费用高、运输过程不透明、货损货差率高、供应链协同能力差等问题不断涌现,严重影响了物流作业效率,市场对于运输管理数字化需求愈发迫切。当前运输行业存在的难题如下&#xf…

mysql-事务特性以及隔离机制

一.ACID 事务(Transaction)是访问和更新数据库的程序执行单元;事务中可能包含一个或多个sql语句,这些语句要么都执行,要么都不执行。 1.逻辑架构和存储引擎 如上图所示,MySQL服务器逻辑架构从上往下可以分…

【密码学】维京密码

维京密码 瑞典罗特布鲁纳巨石上的图案看起来毫无意义,但是它确实是一种维京密码。如果我们注意到每组图案中长笔画和短笔画的数量,将得到一组数字2、4、2、3、3、5、2、3、3、6、3、5。组合配对得到24、23、35、23、36、35。现在考虑如图1.4所示的内容&a…

六、Linux系统下,文件操作命令都有哪些?

总括: 创建文件/文件夹:touch; 查看:cat/more; 复制:copy; 移动文件/文件夹:mv; 删除:rm; 1、创建文件 (1)语法&#x…

java实现docx,pdf文件动态填充数据

一,引入pom 根据需求引入自己所需pom org.apache.poi poi 4.1.1 org.apache.poi poi-ooxml 4.1.1 org.jxls jxls 2.6.0 ch.qos.logback logback-core org.jxls jxls-poi 1.2.0 fr.opensagres.xdocreport fr.opensagres.xdocreport.core 2.0.2 fr.opensagres.xdocrep…

最小生成树 — Prim算法

同Kruskal算法一样,Prim算法也是最小生成树的算法,但与Kruskal算法有较大的差别。 Prim算法整体是通过“解锁” “选中”的方式,点 -> 边 -> 点 -> 边。 因为是最小生成树,所以针对的也是无向图,所以可以随意…

MySql011——检索数据:过滤数据(使用正则表达式)

前提:使用《MySql006——检索数据:基础select语句》中创建的products表 一、正则表达式介绍 关于正则表达式的介绍大家可以看我的这一篇博客《Java038——正则表达式》,这里就不再累赘。 二、使用MySQL正则表达式 2.1、基本字符匹配 检索…

Java版企业电子招投标采购系统源码之首页设计 tbms

​ 功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,查…

照耀国产的星火,再度上新!

国产之光,星火闪耀 ⭐ 新时代的星火⭐ 多模态能力⭐ 图像生成与虚拟人视频生成⭐ 音频生成与OCR笔记收藏⭐ 助手模式更新⭐ 插件能力⭐ 代码能力⭐ 写在最后 ⭐ 新时代的星火 在这个快速变革的时代,人工智能正迅猛地催生着前所未有的革命。从医疗到金融…

CEC2013(MATLAB):遗传算法(Genetic Algorithm,GA)求解CEC2013的28个函数

一、遗传算法GA 遗传算法(Genetic Algorithm,GA)起源于对生物系统所进行的计算机模拟研究,是一种随机全局搜索优化方法,它模拟了自然选择和遗传中发生的复制、交叉(crossover)和变异(mutation)等现象,从任…

easyx图形库基础4:贪吃蛇

贪吃蛇 一实现贪吃蛇:1.绘制网格:1.绘制蛇:3.控制蛇的默认移动向右:4.控制蛇的移动方向:5.生成食物6.判断蛇吃到食物并且长大。7.判断游戏结束:8.重置函数: 二整体代码: 一实现贪吃蛇…

【0基础学爬虫】爬虫基础之网络请求库的使用

大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0基础学…

安卓13解决链接问题

作为Android用户,你可能已经注意到了一个问题——Android 13不再支持PPTP协议。但请别担心,作为一家专业的代理供应商,我们将与你分享解决方案,让你轻松解决L2TP问题,享受到高水平的连接体验。本文将为你提供实用的操作…

什么是浮动(float)?如何清除浮动?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 浮动(Float)和清除浮动⭐ 浮动的使用⭐ 清除浮动1. 空元素法(Empty Element Method)2. 使用 Clearfix Hack3. 使用 Overflow ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发…

微服务与Nacos概述-5

引入OpenFeign 添加依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency><groupId>com.alibaba.cloud</groupId>…

山东布谷科技直播软件开发WebRTC技术:建立实时通信优质平台

在数字化的时代&#xff0c;实时通信成为了人们远程交流的主要方式&#xff0c;目前市场上也出现了很多带有实时通信交流的软件&#xff0c;实时通信符合人们现在的需求&#xff0c;所以在直播软件开发过程中&#xff0c;开发者也运用了实时通信技术为直播软件加入了实时通信的…

【芯片前端】auto_testbench的大版本升级——加入简单预期与自动比对

前言 前文提要&#xff1a; 【芯片前端】一键生成简易版本定向RTL验证环境的脚本——auto_verification_rtl脚本_尼德兰的喵的博客-CSDN博客 【芯片前端】可能是定向验证的巅峰之作——auto_testbench_autotestbench_尼德兰的喵的博客-CSDN博客 工具路径&#xff1a; auto…