计算机竞赛 GRU的 电影评论情感分析 - python 深度学习 情感分类

1 前言

🔥学长分享优质竞赛项目,今天要分享的是

🚩 GRU的 电影评论情感分析 - python 深度学习 情感分类

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目介绍

其实,很明显这个项目和微博谣言检测是一样的,也是个二分类的问题,因此,我们可以用到学长之前提到的各种方法,即:

朴素贝叶斯或者逻辑回归以及支持向量机都可以解决这个问题。

另外在深度学习中,我们可以用CNN-Text或者RNN以及LSTM等模型最好。

当然在构建网络中也相对简单,相对而言,LSTM就比较复杂了,为了让不同层次的同学们可以接受,学长就用了相对简单的GRU模型。

如果大家想了解LSTM。以后,学长会给大家详细介绍。

2 情感分类介绍

其实情感分析在自然语言处理中,情感分析一般指判断一段文本所表达的情绪状态,属于文本分类问题。一般而言:情绪类别:正面/负面。当然,这就是为什么本人在前面提到情感分析实际上也是二分类问题的原因。

3 数据集

学长本次使用的是非常典型的IMDB数据集。

该数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价。该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。

查看其数据集的文件夹:这是train和test文件夹。

在这里插入图片描述

接下来就是以train文件夹介绍里面的内容
在这里插入图片描述

然后就是以neg文件夹介绍里面的内容,里面会有若干的text文件:
在这里插入图片描述

4 实现

4.1 数据预处理

    #导入必要的包import zipfile
​    import os
​    import io
​    import random
​    import json
​    import matplotlib.pyplot as plt
​    import numpy as np
​    import paddle
​    import paddle.fluid as fluid
​    from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embedding
​    from paddle.fluid.dygraph.base import to_variable
​    from paddle.fluid.dygraph import GRUUnit
​    import paddle.dataset.imdb as imdb​    
​    
​    #加载字典def load_vocab():
​        vocab = imdb.word_dict()return vocab
​    #定义数据生成器class SentaProcessor(object):def __init__(self):
​            self.vocab = load_vocab()def data_generator(self, batch_size, phase='train'):if phase == "train":return paddle.batch(paddle.reader.shuffle(imdb.train(self.vocab),25000), batch_size, drop_last=True)elif phase == "eval":return paddle.batch(imdb.test(self.vocab), batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")

步骤

  1. 首先导入必要的第三方库

  2. 接下来就是数据预处理,需要注意的是:数据是以数据标签的方式表示一个句子,因此,每个句子都是以一串整数来表示的,每个数字都是对应一个单词。当然,数据集就会有一个数据集字典,这个字典是训练数据中出现单词对应的数字标签。

4.2 构建网络

这次的GRU模型分为以下的几个步骤

  • 定义网络
  • 定义损失函数
  • 定义优化算法

具体实现如下

    #定义动态GRUclass DynamicGRU(fluid.dygraph.Layer):def __init__(self,size,param_attr=None,bias_attr=None,is_reverse=False,gate_activation='sigmoid',candidate_activation='relu',h_0=None,origin_mode=False,):super(DynamicGRU, self).__init__()self.gru_unit = GRUUnit(size * 3,param_attr=param_attr,bias_attr=bias_attr,activation=candidate_activation,gate_activation=gate_activation,origin_mode=origin_mode)self.size = sizeself.h_0 = h_0self.is_reverse = is_reversedef forward(self, inputs):hidden = self.h_0res = []for i in range(inputs.shape[1]):if self.is_reverse:i = inputs.shape[1] - 1 - iinput_ = inputs[ :, i:i+1, :]input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)hidden, reset, gate = self.gru_unit(input_, hidden)hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)res.append(hidden_)if self.is_reverse:res = res[::-1]res = fluid.layers.concat(res, axis=1)return res


class GRU(fluid.dygraph.Layer):
def init(self):
super(GRU, self).init()
self.dict_dim = train_parameters[“vocab_size”]
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 2
self.batch_size = train_parameters[“batch_size”]
self.seq_len = train_parameters[“padding_size”]
self.embedding = Embedding(
size=[self.dict_dim + 1, self.emb_dim],
dtype=‘float32’,
param_attr=fluid.ParamAttr(learning_rate=30),
is_sparse=False)
h_0 = np.zeros((self.batch_size, self.hid_dim), dtype=“float32”)
h_0 = to_variable(h_0)

        self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.hid_dim*3)self._fc2 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="relu")self._fc_prediction = Linear(input_dim=self.fc_hid_dim,output_dim=self.class_dim,act="softmax")self._gru = DynamicGRU(size=self.hid_dim, h_0=h_0)def forward(self, inputs, label=None):emb = self.embedding(inputs)o_np_mask =to_variable(inputs.numpy().reshape(-1,1) != self.dict_dim).astype('float32')mask_emb = fluid.layers.expand(to_variable(o_np_mask), [1, self.hid_dim])emb = emb * mask_embemb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])fc_1 = self._fc1(emb)gru_hidden = self._gru(fc_1)gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1)tanh_1 = fluid.layers.tanh(gru_hidden)fc_2 = self._fc2(tanh_1)prediction = self._fc_prediction(fc_2)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction

4.3 训练模型

    def train():with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可# with fluid.dygraph.guard(place = fluid.CPUPlace()):


processor = SentaProcessor()
train_data_generator = processor.data_generator(batch_size=train_parameters[“batch_size”], phase=‘train’)

        model = GRU()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["lr"],parameter_list=model.parameters())steps = 0Iters, total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]], (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in data]).astype('int64').reshape(-1))label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train()prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("step: %d, ave loss: %f, ave acc: %f" %(steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)draw_train_process(Iters, total_loss, total_acc)

在这里插入图片描述
在这里插入图片描述

4.4 模型评估

在这里插入图片描述

结果还可以,这里说明的是,刚开始的模型训练评估不可能这么好,很明显是过拟合的问题,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将GRU模型换为更为合适的RNN中的LSTM以及bi-
LSTM模型会好很多。

4.5 模型预测

train_parameters["batch_size"] = 1
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):sentences = 'this is a great movie'data = load_data(sentences)print(sentences)print(data)data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = GRU()model, _ = fluid.load_dygraph("data/save_dir_750.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:正面概率为:%0.5f,负面概率为:%0.5f' % (result.numpy()[0][0],result.numpy()[0][1]))

在这里插入图片描述

训练的结果还是挺满意的,到此为止,我们的本次项目实验到此结束。

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92932.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【探索Linux】—— 强大的命令行工具 P.3(Linux开发工具 vim)

阅读导航 前言vim简介概念特点 vim的相关指令vim命令模式(Normal mode)相关指令插入模式(Insert mode)相关指令末行模式(last line mode)相关指令 简单vim配置(附配置链接)温馨提示 前言 前面我们讲了C语言的基础知识,也了解了一些数据结构&…

Go 安装配置

介绍Ubuntu20.04 安装和配置Go 1.安装Go 去这个地方下载Go https://go.dev/doc/install 如果之前安装过,可以参考这个(没有可以忽略) 下载完成后执行 sudo tar -C /usr/local -xzf go1.21.0.linux-amd64.tar.gz 然后修改环境变量 sudo ge…

GaussDB 实验篇+openGauss的4种1级分区案例

✔ 范围分区/range分区 -- 创建表 drop table if exists zzt.par_range; create table if not exists zzt.par_range (empno integer,ename char(10),job char(9),mgr integer(4),hiredate date,sal numeric(7,2),comm numeric(7,2),deptno integer,constraint pk_par_emp pri…

python数据分析需要学哪些,python数据分析要学多久

大家好,小编为大家解答python数据分析应该学什么软件的问题。很多人还不知道python数据分析需要什么基础,现在让我们一起来看看吧! 根据调查结果,十大最常用的数据工具中有八个来自或利用Python。Python广泛应用于所有数据科学领域…

开发一个RISC-V上的操作系统(八)—— 抢占式多任务(Preemptive Multitasking)

目录 一、抢占式多任务 二、代码实现 三、上板测试 本节的代码在仓库的 06_Preemptive_Muti_Task 目录下,仓库链接:riscv_os: 一个RISC-V上的简易操作系统 本文代码的运行调试会在前面开发的RISC-V处理器上进行,仓库链接:cpu_…

时序预测 | MATLAB实现基于CNN-BiGRU卷积双向门控循环单元的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN-BiGRU卷积双向门控循环单元的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于CNN-BiGRU卷积双向门控循环单元的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 MATLAB实现基于…

Python Opencv实践 - 图像金字塔

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像上采样 #cv.pyrUp(src, dstNone, dstsizeNone, borderTypeNone) #参考资料:https://blo…

60页数字政府智慧政务大数据资源平台项目可研方案PPT

导读:原文《60页数字政府智慧政务大数据资源平台项目可研方案PPT》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 项目需求分析 项目建设原则和基本策略…

python做出来的作品,python作品创意简单

大家好,小编来为大家解答以下问题,python做出来的作品,python作品创意简单,今天让我们一起来看看吧! Python语言学习-----简易计算器的制作 我是一名普通的大二在校学生,在大二第一学期开设的课程里接触到P…

selenium语法进阶+常用API

目录 浏览器操作 浏览器回退,前进 与刷新 浏览器窗口设置大小 浏览器设置宽高 浏览器窗口最大化 浏览器控制滚动条 信息打印 打印页面的标题和当前页面的URL 定位一组元素 鼠标和键盘事件 键盘 鼠标 下拉框操作 通过索引定位(se…

一.RocketMQ概念

RocketMQ概念 1.概念2.应用场景3.MQ的优点和缺点4.常见MQ对比 1.概念 MQ(Message Queue),是一种提供消息队列服务的中间件,也称为消息中间件,是一套提供了消息生产、存储、消费全过程API的软件系统。 RocketMQ是阿里巴巴2016年MQ中间件&…

算法学习总结

算法总结 文章目录 算法总结搜索遍历dfs树的深度树的重心图的连通块划分 bfs双端队列bfsbfs图问题 迭代加深双向搜索A*IDA*Morris遍历Manacher 数论质数判断质数分解质因数埃氏筛法线性筛法 约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法 欧拉函数快速幂快速…

C语言好题解析(一)

目录 选择题1选择题2选择题3选择题4编程题一 选择题1 执行下面程序,正确的输出是( )int x 5, y 7; void swap() {int z;z x;x y;y z; } int main() {int x 3, y 8;swap();printf("%d,%d\n",x, y);return 0; }A: 5,7 B: …

2022年工作架构分析

mpmw自动化流程工具 schema动态数据 Schema 本身是一个JSON ,Schema 通过一些特定字段描述和定义 JSON的数据结构。 最常见的表单通过类XML语法定义。一些库支持通过一些特定结构的 JSON (Schema)来生成类XML标签。 formily 是其中实现之一。 表单设计器通过可视…

TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka

TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka 一、技术流程二、搭建环境三、创建Kafka changefeed四、写入数据以产生变更日志五、配置 Flink 消费 Kafka 数据 一、技术流程 快速搭建 TiCDC 集群、Kafka 集群和 Flink 集群创建 c…

三种MMIC放大器偏置电压顺序

HBT自偏置放大器偏置顺序 1、有两种HBT放大器,自偏置和带电流控制的自偏置,下图是HBT自偏置放大器最简单的偏置。这些放大器只需要接通集电极电压。有一个设置电流的偏置电阻。放大器有一个电流反射镜来控制基极电压。 2、 电阻值的计算 3、打开电源并…

【BASH】回顾与知识点梳理(三十一)

【BASH】回顾与知识点梳理 三十一 三十一. 进程的管理31.1 给进程发送讯号kill -signal PIDlinux系统后台常驻进程killall -signal 指令名称 31.2 关于进程的执行顺序Priority 与 Nice 值nice :新执行的指令即给予新的 nice 值renice :已存在进程的 nice…

机器学习笔记:线性链条件随机场(CRF)

0 引入:以词性标注为例 比如我们要对如下句子进行标注: “小明一把把把把住了”那么我么可能有很多种词性标注的方法,中间四个“把”,可以是“名词名词动词名词”,可以是“名词动词动词名词”等多种形式。 那么&#…

图片转换成pdf格式?这几种转换格式方法了解一下

图片转换成pdf格式?将图片转换成PDF格式的好处有很多。首先,PDF格式具有通用性,可以在几乎任何设备上查看。其次,PDF格式可以更好地保护文件,防止被篡改或者复制。此外,PDF格式还可以更好地压缩文件大小&am…

django-基本环境配置

文章目录 django 环境安装1. 安装环境1.1 安装 Python (配置虚拟环境)1.1.1 步骤 1.2 Conda配置环境参考 django 环境安装 1. 安装环境 1.1 安装 Python (配置虚拟环境) 由于国外源速度慢,可以pip添加清华源 pip config set global.index-url https://pypi.tuna.…