神经网络|(五)概率论基础知识-条件概率

【1】引言

前序完成了古典概型知识的简单学习,今天在此基础上开始条件概率的学习。古典概型的学习文章为:神经网络|(四)概率论基础知识-古典概型-CSDN博客

【2】条件概率

条件概率就是在A事件已经发生的条件下,B事件发生的概率。

设A、B是两个事件,且P(A)>0,A事件发生的条件下B事件发生的条件概率为:

P(B|A)=\frac{P(AB)}{P(A)}

上式很容易推出新表达式:P(AB)=P(B|A)P(A)

【3】应用讨论

实际上,如果给我们一个实例,我们会陷入的困境是:在某条件已经达成的前提下,究竟是按照P(B/A)还是按照P(AB)计算。

P(B/A)明确说了是事件A发生的条件下事件B再发生的概率,综合变表现的效果是事件A和B都发生;

而P(AB)就直接代表AB两个事件都发生了。

这样看,P(B/A)和P(AB)直接表现效果好像是一样的,所以具体该如何选择?

【3.1】古典概型

首先给古典概型的示例:投币游戏,任何一次投币正面朝上的概率都是1/2,问:前两次投币正面朝上,但第三次投币反面朝上的概率?

其实三次投币的所有可能情况都可以直接列出来:

【正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反】

很显然,正正反的概率是1/8。

实际上我们自己算出1/8也非常容易,因为每一次投币的正面朝上和反面朝上的概率都是1/2,并且每一步的结果互相独立、互不影响,所以应该让每一次投币的概率直接相乘:

P(正正反)=(1/2)(1/2)(1/2)=1/8。

从另一个角度,第三次投币为反面是在前两次投币为正面的条件下发生的,正正反的总投币结果影应该是条件概率:

P(反|正正)=P(正正反)/P(正正)=(1/8)/(1/4)=1/2

其中,P(正正)代表前两次投币结果都是正面的概率,P(正正)=(1/2)/(1/2)=1/4。

P(反|正正)=1/2,本质上代表的是第三次投币,也就是单次投币为反面的概率。虽然有前两次投币为正面的条件,但这是个古典概型下的投币试验,和前面的任何效果都没有关系。

这启发我们,古典概型下,计算某前提条件下的条件概率实际上是回到了单次试验发生的概率,它的结果是单次试验的概率,不是在获得前提条件下的多次试验后再加上最后这次试验的综合概率。

【3.2】古典概型进阶

再给一个示例:玩投壶游戏,投中才可进下一轮。假如第一次投中的概率是0.5,但如果第一次投中后,会移远壶的距离,此时投中的概率变成0.3,如果第二次再投中。会再次移远壶的距离,这时的投中概率变成0.1。问,前两次投中,第三次没有投中的概率?

这时候我们按照传统的思路来分析,记Ai为第i次投壶投中,则前两次投中,第三次没有投中的概率可以这样想:

A1代表第一次投中,A1A2代表两次投中,这两次投中是一步接一步,且第一次投中不会改变第二次投中的概率,因为题目中已经约定好了第二次投中的概率是0.3   ;

但在另一个角度,只有在第一次投中的条件下,第二次投壶游戏才可能发生。

这时候,不妨写出来:

P(A2|A1)=\frac{​{P(A1A2))}}{P(A1))}=\frac{0.5\times 0.3}{0.5}=0.3

这个计算结果回到了第二次投壶自带的概率,所以它是0.3。

然后我们再看这个模型,其实它就是稍微复杂的古典模型,每一事件发生的概率是提前预知的,在这个事件之前的所有事件,都和这个概率没有关系。

条件概率只是该事件单独发生的概率。

【3.3】综合分析

所以,在某条件已经达成的前提下,新事件发生的概率,其实是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。

【4】细节说明

前述分析中,使用了三个事件来说明实际应用中应该计算综合概率,中间未分析第一个事件发生条件下第二个事件发生的概率,其实就是再往回走一步,省略是因为分析第三步和第二步没有本质区别。

古典概型是理解条件概率分析的基础,上述条件概率求取的过程中,给出了不同步骤时不同的概率,实际上就是将不同的古典概型结合在一起,但在本质上还是古典概型,所以使用古典概型来分析非常实用。

【5】总结

回顾了条件概率的基础知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/9310.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式版本控制系统:Git

1 Git概述 Git官网:https://git-scm.com/ Git是一个免费的、开源的分布式版本控制系统,可以快速高效地处理从小型到大型的各种项目Git易于学习,占地面积小,性能极快。它具有廉价的本地库、方便的暂存区域和多个工作流分支等特性…

【leetcode】T1599

解题心得: 题目长且绕,直接看测试样例的解析有助于更快把握题目核心需求(即关注样例的输入、运算逻辑、输出) 题面 原题链接1599. 经营摩天轮的最大利润 - 力扣(LeetCode) AC代码 class Solution { pub…

能说说MyBatis的工作原理吗?

大家好,我是锋哥。今天分享关于【Redis为什么这么快?】面试题。希望对大家有帮助; 能说说MyBatis的工作原理吗? MyBatis 是一款流行的持久层框架,它通过简化数据库操作,帮助开发者更高效地与数据库进行交互。MyBatis…

Oracle Primavera P6 最新版 v24.12 更新 1/2

目录 引言 P6 PPM 更新内容 1. 在提交更新基线前预览调整 2. 快速轻松地取消链接活动 3. 选择是否从 XER 文件导入责任经理 4. 提高全局变更报告的清晰度 5. 将整个分层代码值路径导出到 CPP 6. 里程碑活动支持所有关系类型 6. 时间表批准 7. 性能改进 8. 安装改进 …

ORA-04031 错误

ORA-04031 错误表示 Oracle 数据库无法在共享池中分配所需的内存。共享池是 SGA(系统全局区)的一部分,用于缓存SQL语句、PL/SQL存储过程和控制结构等。此错误通常与数据库的内存管理有关,可能由于共享池大小不足或存在内存碎片导致…

SpringBoot 中的测试jar包knife4j(实现效果非常简单)

1、效果图 非常快的可以看见你实现的接口 路径http://localhost:8080/doc.html#/home 端口必须是自己的 2、实现效果 2.1、导入jar包 <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-openapi3-jakarta-spring-boot-star…

2024年记 | 凛冬将至

放弃幻想&#xff0c;准备斗争&#xff01; 考研or就业&#xff1f; 上大学以来&#xff0c;考研上名校在我的心里一直是一颗种子&#xff0c;2024年初&#xff0c;当时的想法是考研和就业两手抓。买了张宇的高数现代&#xff0c;想要死磕&#xff01; 也记了挺多笔记... 如果…

【实践案例】使用Dify构建文章生成工作流【在线搜索+封面图片生成+内容标题生成】

文章目录 概述开始节点图片封面生成关键词实时搜索主题参考生成文章详情和生成文章标题测试完整工作流运行测试结果 概述 使用Dify构建文章生成工作流&#xff0c;使用工具包括&#xff1a;使用 Tavily 执行的搜索查询&#xff0c;使用Flux生成封面图片&#xff0c;使用Stable…

Linux线程安全

文章目录 &#x1f96d;Linux线程互斥进程线程间的互斥相关背景概念互斥锁mutex互斥锁的接口互斥锁实现原理探究 &#x1f34d;可重入VS线程安全概念常见的线程不安全的情况常见的线程安全的情况常见的不可重入的情况常见的可重入的情况可重入与线程安全联系可重入与线程安全区…

csapp2.4节——浮点数

目录 二进制小数 十进制小数转二进制小数 IEEE浮点表示 规格化表示 非规格化表示 特殊值 舍入 浮点运算 二进制小数 类比十进制中的小数&#xff0c;可定义出二进制小数 例如1010.0101 小数点后的权重从-1开始递减。 十进制小数转二进制小数 整数部分使用辗转相除…

在php中怎么打开OpenSSL

&#xff08;点击即可进入聊天助手&#xff09; 背景 在使用php做一些项目时,有用到用户邮箱注册等,需要开启openssl的能力 在php系统中openssl默认是关闭状态的,在一些低版本php系统中,有的甚至需要在服务器终端后台,手动安装 要打开OpenSSL扩展&#xff0c;需要进行以下步骤 …

Rust语言进阶之zip用法实例(九十五)

简介&#xff1a; CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布&#xff1a;《Android系统多媒体进阶实战》&#x1f680; 优质专栏&#xff1a; Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a; 多媒体系统工程师系列【…

[权限提升] Windows 提权 — 系统内核溢出漏洞提权

关注这个框架的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;系统内核溢出漏洞提权介绍 注意&#xff1a;提权很容易让电脑蓝屏&#xff0c;所以如果是测试的话&#xff0c;提权前最好做好系统备份。 溢出漏洞就像是往杯子里装水 —— 如…

Windows11 安装poetry

使用powershell安装 (Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | py - 如果使用py运行失败则替换为python即可 终端运行结果如下 D:\AI\A_Share_investment_Agent> (Invoke-WebRequest -Uri https://install.python-poetry.…

系统思考—心智模式

“我们的大脑对连贯性的渴望远胜于对准确性的追求。”—诺贝尔经济学得主丹尼尔卡尼曼 在面对复杂的决策时&#xff0c;我们往往更倾向于寻找那些能够迅速串联起来的信息&#xff0c;而非深入挖掘每一个细节的真实性。这种倾向在日常生活中或许能帮助我们迅速作出决策&#xf…

基于ollama,langchain,springboot从零搭建知识库三【解析文档并存储到向量数据库】

安装环境 安装pgvector&#xff0c;先设置docker镜像源&#xff1a; vim /etc/docker/daemon.json {"registry-mirrors": ["https://05f073ad3c0010ea0f4bc00b7105ec20.mirror.swr.myhuaweicloud.com","https://mirror.ccs.tencentyun.com",&…

Mac m1,m2,m3芯片使用nvm安装node14报错

使用nvm安装了node 12/16/18都没有问题&#xff0c;到14就报错了。第一次看到这个报错有点懵&#xff0c;查询资料发现是Mac芯片的问题。 Issue上提供了两个方案&#xff1a; 1、为了在arm64的Mac上安装node 14&#xff0c;需要使用Rosseta&#xff0c;可以通过以下命令安装 …

学习数据结构(2)空间复杂度+顺序表

1.空间复杂度 &#xff08;1&#xff09;概念 空间复杂度也是一个数学表达式&#xff0c;表示一个算法在运行过程中根据算法的需要额外临时开辟的空间。 空间复杂度不是指程序占用了多少bytes的空间&#xff0c;因为常规情况每个对象大小差异不会很大&#xff0c;所以空间复杂…

使用 KNN 搜索和 CLIP 嵌入构建多模态图像检索系统

作者&#xff1a;来自 Elastic James Gallagher 了解如何使用 Roboflow Inference 和 Elasticsearch 构建强大的语义图像搜索引擎。 在本指南中&#xff0c;我们将介绍如何使用 Elasticsearch 中的 KNN 聚类和使用计算机视觉推理服务器 Roboflow Inference 计算的 CLIP 嵌入构建…

知识库管理驱动企业知识流动与工作协同创新模式

内容概要 知识库管理在现代企业中扮演着至关重要的角色&#xff0c;其价值不仅体现在知识的积累&#xff0c;还在于通过优质的信息流动促进协作与创新。有效的知识库能够将分散的信息整合为有序、易于访问的资源&#xff0c;为员工提供实时支持&#xff0c;进而提升整体工作效…