竞赛项目 车位识别车道线检测 - python opencv

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 车位识别车道线检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

该项目可推荐用于竞赛项目

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式

整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述

import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_polypoints = []
prev_points = []
patches = []
total_points = []
breaker = Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas = ax.figure.canvasself.poly = PolygonSelector(ax, self.onselect)self.ind = []def onselect(self, verts):global pointspoints = vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key == 'b':globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print("data saved in "+ savePath + " file") with open(savePath, 'wb') as f:pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key == 'n': pts = np.array(points, dtype=np.int32) if points != prev_points and len(set(points)) == 4:print("Points : "+str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points = pointsif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('video_path', help="Path of video file")parser.add_argument('--out_file', help="Name of the output file", default="regions.p")args = parser.parse_args()global globSelectglobal savePathsavePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"print("\n> Select a region in the figure by enclosing them within a quadrilateral.")print("> Press the 'f' key to go full screen.")print("> Press the 'esc' key to discard current quadrilateral.")print("> Try holding the 'shift' key to move all of the vertices.")print("> Try holding the 'ctrl' key to move a single vertex.")print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")print("> When you are done press 'b' to Exit the program\n")video_capture = cv2.VideoCapture(args.video_path)cnt=0rgb_image = Nonewhile video_capture.isOpened():success, frame = video_capture.read()if not success:breakif cnt == 5:rgb_image = frame[:, :, ::-1]cnt += 1video_capture.release()while True:fig, ax = plt.subplots()image = rgb_imageax.imshow(image)p = PatchCollection(patches, alpha=0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect = SelectFromCollection(ax)bbox = plt.connect('key_press_event', onkeypress)break_event = plt.connect('key_press_event', break_loop)plt.show()globSelect.disconnect()

(PS: 若代码出现bug可反馈博主, 及时修改)

车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/94021.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis_亿级访问量数据处理

11. 亿级访问量数据处理 11.1 场景表述 手机APP用户登录信息,一天用户登录ID或设备ID电商或者美团平台,一个商品对应的评论文章对应的评论APP上有打卡信息网站上访问量统计统计新增用户第二天还留存商品评论的排序月活统计统计独立访客(Unique Vistito…

nginx反向代理后实现nginx和apache两种web服务器能够记录客户端的真实IP地址

一.构建环境 二.配置反向代理 1.基于源码安装的nginx环境下修改nginx.conf(设备1) 2.通过windows powershell进行修改hosts文件并测试 3.设备2和设备3上查看日志,可以看到访问来源都是代理服务器(2.190)而不是真实…

自定义WEB框架结合Jenkins实现全自动测试

自定义WEB框架结合Jenkins实现全自动测试 allure生成 allure生成 1.allure–纯命令运行 -固定的–稍微记住对应的单词即可。2 安装,2个步骤: 1.下载allure包,然后配置环境变量。 https://github.com/allure-framework/allure2/releases/tag/2.22.4 2.在…

【boost网络库从青铜到王者】第五篇:asio网络编程中的同步读写的客户端和服务器示例

文章目录 1、简介2、客户端设计3、服务器设计3.1、session函数3.2、StartListen函数3、总体设计 4、效果测试5、遇到的问题5.1、服务器遇到的问题5.1.1、不用显示调用bind绑定和listen监听函数5.1.2、出现 Error occured!Error code : 10009 .Message: 提供的文件句柄无效。 [s…

召集令:CloudQuery 社区有奖征文活动来啦!

CloudQuery 社区第一期征文活动来袭!!!只要你对 CloudQuery 产品感兴趣,或者是希望了解 CQ ,都可以来参加,在本期活动中,我们也为大家准备了多种主题供你选择,CQ 使用案例、版本对比…

Java【Spring】Bean 的作用域和生命周期

文章目录 前言前言一、关于 Bean 的作用域问题引入二、Bean 的作用域1, 什么是 Bean 的作用域2, Bean 的六种作用域3, 设置 Bean 的作用域(解决开篇的问题) 三、Bean 的生命周期总结 前言 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4…

在vue中使用swiper轮播图(搭配watch和$nextTick())

在组件中使用轮播图展示图片信息: 1.下载swiper,5版本为稳定版本 cnpm install swiper5 2.在组件中引入swiper包和对应样式,若多组件使用swiper,可以把swiper引入到main.js入口文件中: import swiper/css/swiper.css //引入swipe…

iOS 17 正式版预计 9 月中下旬发布,部分新功能延后推出

苹果公司预计将在 9 月中下旬推出 iOS 17 正式版,iPhone XS 及更新的机型可免费更新。这次更新包含了许多新功能,但是根据苹果公司的网站显示,并不是所有的功能都会立即可用。苹果表示有一些功能“将在今年晚些时候推出”,比如&am…

213、仿真-基于51单片机智能电表电能表用电量电费报警Proteus仿真设计(程序+Proteus仿真+原理图+配套资料等)

毕设帮助、开题指导、技术解答(有偿)见文未 目录 一、硬件设计 二、设计功能 三、Proteus仿真图 四、原理图 五、程序源码 资料包括: 需要完整的资料可以点击下面的名片加下我,找我要资源压缩包的百度网盘下载地址及提取码。 方案选择 单片机的选…

Constanze‘s Machine

一、题目 二、分析 列表找规律&#xff0c;不同长度的u能够带来多少种不同的情况 发现规律&#xff0c;case满足斐波那契数列。 所以可以先预计算斐波那契数列fib。 #include<iostream> #include<cstring> #include<algorithm> #define int long long usi…

VS2019生成的DLL,给QT(MinGW版本)使用的小结

VS2019端&#xff1a; a 基于生成一个DLL的工程&#xff08;要注意生成是x86&#xff0c;还是x64的&#xff0c;需要和后面的QT的App工程对应&#xff09;&#xff0c;这里不多解释了&#xff0c;网上多的是&#xff1b; b 在cpp实现文件里&#xff0c;假如要导出一个这样的…

IDEA关闭项目,但是后台程序没有关闭进程(解决方案)

最近遇到一个很奇怪的问题&#xff0c;idea关闭项目后&#xff0c;系统进程没有杀死进程&#xff0c;再次执行的时候会提示端口占用&#xff0c;并提示Process exited with an error: 1 (Exit value: 1) 错误原因&#xff1a;应用程序关闭后&#xff0c;进程不能同步关闭 解决方…

【Nginx17】Nginx学习:目录索引、字符集与浏览器判断模块

Nginx学习&#xff1a;目录索引、字符集与浏览器判断模块 今天要学习的内容有几个还是大家比较常见的&#xff0c;所以学习起来也不会特别费劲。对于目录的默认页设置大家都不会陌生&#xff0c;字符集的设置也比较常见&#xff0c;而浏览器的判断这一块&#xff0c;可能有同学…

LeetCode ——二叉树篇(三)

刷题顺序及思路来源于代码随想录&#xff0c;网站地址&#xff1a;https://programmercarl.com 二叉树的定义及创建见&#xff1a; LeetCode ACM模式——二叉树篇&#xff08;一&#xff09;_要向着光的博客-CSDN博客 目录 116. 填充每个节点的下一个右侧节点指针 117. 填…

Doris2.0时代的一些机遇和挑战!

300万字&#xff01;全网最全大数据学习面试社区等你来&#xff01; 上个周五的时候&#xff0c;Doris官宣了2.0版本&#xff0c;除了在性能上的大幅提升&#xff0c;还有一些特性需要大家特别关注。 根据官网的描述&#xff0c;Doris在下面领域都有了长足进步&#xff1a; 日志…

python的 __all__ 用法

一、介绍 在Python中&#xff0c;__all__通常用于定义模块的公开接口。在使用from module import *语句时&#xff0c;此时被导入模块若定义了__all__属性&#xff0c;则只有__all__内指定的属性、方法、类可被导入&#xff1b;若没定义&#xff0c;则导入模块内的所有公有属性…

嵌入式系统中如何选择RTC电池?

RTC&#xff08;Real Time Clock&#xff09;是一种用于提供系统时间的独立定时器&#xff0c;它可以在系统断电或低功耗模式下继续运行&#xff0c;只需要一个后备电池作为供电源。在嵌入式系统中&#xff0c;选择合适的RTC电池时非常关键的&#xff0c;它会影响系统时间的准确…

pyqt和ros结合使用接受相机和点云消息并展示(附代码)

代码是 ROS 节点的 Python QT脚本,用于订阅 /turtle1/cmd_vel、/tracking_image 和 /test_pointcloud 话题。 脚本首先通过 ps 命令检查是否已启动 ROS 主节点,如果没有则启动一个新的 ROS 主节点。然后,它订阅 /turtle1/cmd_vel、/tracking_image 和 /test_pointcloud 话题…

Git 常用操作

一、Git 常用操作 1、Git 切换分支 git checkout命令可以用于三种不同的实体&#xff1a;文件&#xff0c;commit&#xff0c;以及分支。checkout的意思就是对于一种实体的不同版本之间进行切换的操作。checkout一个分支&#xff0c;会更新当前的工作空间中的文件&#xff0c;…

【日常积累】HTTP和HTTPS的区别

背景 在运维面试中&#xff0c;经常会遇到面试官提问http和https的区别&#xff0c;今天咱们先来简单了解一下。 超文本传输协议HTTP被用于在Web浏览器和网站服务器之间传递信息&#xff0c;HTTP协议以明文方式发送内容&#xff0c;不提供任何方式的数据加密&#xff0c;如果…