直方图均衡化和自适应直方图均衡化

前言: Hello大家好,我是Dream。 均衡化是数字图像处理中常用的一种技术,用于增强图像的视觉效果和对比度。,今天我们将实现对同一张图像的直方图均衡化自适应直方图均衡化处理,学习一下两者的的基本原理和实现过程,一起来看看吧~

一、直方图均衡化

直方图均衡化(Histogram Equalization)是一种图像处理技术,通过重新分配图像灰度级别来增强图像的对比度和视觉效果。它基于整个图像的灰度直方图来调整像素的灰度值分布。通过增加较暗区域的亮度和减少较亮区域的亮度,直方图均衡化可以使图像的灰度级别分布更均匀,从而增强图像的细节和对比度。

1.得到灰度图

通过三同道的彩色图生成单通道的灰度图
首先,我们使用PIL库中的Image.open()函数读取彩色图像,并将其转换为数组。然后,我们获取图像的高度和宽度,并创建一个与原始图像大小相同、数据类型为uint8的全黑数组gray_img,用于保存灰度图像。

接着,我们遍历每个像素,将三个通道的值求平均,并将结果保存到灰度图像中。由于RGB图像的三个通道具有相同的权重,因此将三个通道的值求平均可以得到一个比较准确的灰度值。

然后,我们将灰度图像转换为PIL图像对象,并使用Matplotlib库中的plt.imshow()函数显示彩色图像和灰度图像。最后,我们使用PIL库中的Image.save()函数将灰度图像保存为文件。

import numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as plt# 读取彩色图像
img = Image.open('image.jpg')# 将图像转换为数组
img_arr = np.array(img)# 获取图像的高度和宽度
h, w, _ = img_arr.shape# 创建一个新的数组,用于保存灰度图像
gray_img = np.zeros((h, w), dtype=np.uint8)# 遍历每个像素,将三个通道的值求平均,并保存到灰度图像中
for i in range(h):for j in range(w):gray_img[i, j] = int(np.mean(img_arr[i, j]))# 将灰度图像转换为PIL图像对象
gray_pil_img = Image.fromarray(gray_img)
plt.imshow(img)
plt.title('imge')
plt.axis('off')
plt.show()
plt.imshow(gray_pil_img, cmap='gray')
plt.title('gray_pil_imge')
plt.axis('off')
plt.show()
# 保存灰度图像
gray_pil_img.save('gray_image.jpg')

在这里插入图片描述
在这里插入图片描述

2. 直方图统计

使用PIL库中的Image.open()函数读取灰度图像,并使用convert('L')方法将图像转换为灰度模式。然后,我们获取图像的宽度和高度,并创建一个长度为256的全0列表hist,用于保存直方图统计结果。

接着,遍历每个像素,获取其灰度值,并将对应的直方图计数器加1。最后,我们输出直方图统计结果,即每个灰度值出现的像素数。

# 读取灰度图像
gray_img = Image.open('gray_image.jpg').convert('L')
width, height = gray_img.size# 统计直方图
hist = [0] * 256
for y in range(height):for x in range(width):pixel = gray_img.getpixel((x, y))hist[pixel] += 1
print(hist)
# 输出直方图统计结果
for i in range(len(hist)):print("灰度值 %d: %d 个像素" % (i, hist[i]))

在这里插入图片描述

3. 绘制直方图

# 绘制直方图
plt.bar(range(256), hist)
plt.show()

在这里插入图片描述

4. 直方图均衡化

使图片有更好的视觉效果,有更高的对比度,即像素的灰度分布更平均
首先,我们使用PIL库中的histogram()函数对灰度图像进行直方图统计,得到一个长度为256的列表equ_img,其中每个元素表示对应灰度级别的像素数量。

接着,我们创建一个空列表lut,用于保存灰度级别的映射表。然后,通过遍历equ_img列表,将每个灰度级别的像素数量除以255得到一个步长step,表示每个灰度级别在均衡化后的直方图中所占的比例。接下来,我们定义一个变量n,初始化为0,用于记录当前累积的像素数量。

在内层循环中,我们遍历256个灰度级别,并将当前累积的像素数量除以步长step得到一个映射值n / step。这个映射值表示当前灰度级别在均衡化后的直方图中所对应的灰度级别。

最后,我们使用PIL库中的point()方法,根据映射表lut将灰度图像进行映射,得到均衡化后的图像equ_img。在这里,lut列表中的值被用作灰度级别的映射,'L'参数表示输出图像的模式为灰度模式。

这样,经过直方图均衡化处理后,图像的灰度分布将更加均匀,增强了图像的对比度和细节。

# 直方图均衡化
equ_img = gray_img.histogram()
lut = []
for b in range(0, len(equ_img), 256):step = sum(equ_img[b:b+256]) / 255n = 0for i in range(256):lut.append(n / step)n += equ_img[b+i]
equ_img = gray_img.point(lut, 'L')# 显示原始图像和均衡化后的图像
plt.imshow(gray_img, cmap='gray')
plt.title('Original Image')
plt.axis('off')
plt.show()plt.imshow(equ_img, cmap='gray')
plt.title('Equalized Image')
plt.axis('off')
plt.show()# 保存原始图像和均衡化后的图像
gray_img.save('Original.jpg')
equ_img.save('Equalized.jpg')# 统计均衡化后的直方图
hist_equ = equ_img.histogram()# 绘制均衡化前后的直方图
plt.hist(gray_img.histogram(), 256, [0, 256])
plt.title('Original Image')
plt.xlim([0, 256])
plt.show()plt.hist(hist_equ, 256, [0, 256])
plt.title('Equalized Image')
plt.xlim([0, 256])
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、自适应直方图均衡化

自适应直方图均衡化(Adaptive Histogram Equalization)是直方图均衡化的一种变体,它考虑到图像中不同区域的局部差异。与直方图均衡化不同,自适应直方图均衡化将图像分成多个小块,并在每个小块内独立地应用直方图均衡化。通过这种方式,自适应直方图均衡化可以更好地保留图像的细节,并避免过度增强噪声。自适应直方图均衡化可以根据图像的局部特征自动调整每个小块的灰度级别,以实现更精细的图像增强。

1.自适应直方图均衡化(AHE)

AHE是一种局部直方图均衡化方法,它将图像分成若干个小区域,对每个小区域进行直方图均衡化处理,从而增强图像的对比度。该算法的核心思想是在每个小区域内计算直方图,并将其变换为累积分布函数(CDF),然后将CDF拉伸以增加对比度。因此,AHE可以有效地增强图像中的局部细节信息。
在此处,我们的输入参数包括原始图像img和窗口大小window_size。首先,函数遍历每个像素,获取以该像素为中心的大小为window_size的窗口。如果窗口越界,则跳过该像素。然后,计算窗口的直方图,并计算其累积分布函数。接着,将CDF归一化并拉伸,以增加窗口内像素的对比度。最后,将均衡化后的像素值放回原图中,得到均衡化后的结果。

# 自适应直方图均衡化(AHE)
def adaptive_histogram_equalization(img, window_size):# 获取图像大小height, width = img.shape[:2]# 创建一个全黑的图像result = np.zeros((height, width), dtype=np.uint8)# 遍历每个像素for i in range(height):for j in range(width):# 获取窗口中心点center_x, center_y = i + window_size // 2, j + window_size // 2# 如果窗口越界,则跳过if center_x < window_size // 2 or center_x >= height - window_size // 2 or center_y < window_size // 2 or center_y >= width - window_size // 2:continue# 获取窗口window = img[center_x - window_size // 2:center_x + window_size // 2 + 1, center_y - window_size // 2:center_y + window_size // 2 + 1]# 计算窗口的直方图hist, _ = np.histogram(window.ravel(), 256, [0, 256])# 计算累积分布函数cdf = hist.cumsum()# 归一化cdf_normalized = cdf * 255 / cdf[-1]# 将均衡化后的像素值放回原图中result[i][j] = cdf_normalized[img[i][j]]return result

2.限制对比度自适应直方图均衡化(CRHE)

CRHE是在AHE的基础上增加了对比度限制。它通过在AHE之后对像素值进行限制,以避免过度增加对比度而导致噪声的出现。该算法的核心思想是先使用AHE增强图像的对比度,然后使用限制对比度的方法对像素值进行截断,从而控制对比度的增加。
在代码中,输入参数包括原始图像img、窗口大小window_size和对比度限制因子clip_limit。首先,调用自己实现的自适应直方图均衡化函数adaptive_histogram_equalization对原始图像进行直方图均衡化处理,得到均衡化后的结果。接着,使用OpenCV库中的cv2.createCLAHE函数创建一个限制对比度的CLAHE对象,并将均衡化后的图像作为输入进行处理。

# 限制对比度自适应直方图均衡化(CRHE)
def contrast_limited_adaptive_histogram_equalization(img, window_size, clip_limit):# 使用自己实现的自适应直方图均衡化ahe_img = adaptive_histogram_equalization(img, window_size)# 使用OpenCV库实现限制对比度自适应直方图均衡化clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=(window_size, window_size))result = clahe.apply(ahe_img)return result

3.读取图片

# 读取图片
img = cv2.imread("image.jpg", cv2.IMREAD_GRAYSCALE)

4.自适应直方图均衡化

首先创建一个与原始图像img相同大小的全黑图像ahe_result,用于保存处理后的结果。然后,使用一个循环遍历多个窗口尺寸,依次调用自适应直方图均衡化函数adaptive_histogram_equalization对原始图像进行处理,并将处理后的结果加到ahe_result中。最后得到多个尺寸的均衡化结果的平均值,作为最终的均衡化结果。

我们使用了不同尺寸的窗口,分别为50、100、150和200。最后将这四个结果取平均值作为最终结果,这种方法可以提高均衡化的效果,因为不同尺寸的窗口可以捕捉到图像中不同尺度的局部细节信息,从而增强图像的对比度和细节信息,避免过大或过小的窗口对结果产生较大影响。

# 自适应直方图均衡化
# 创建一个和原始图像大小相同的全零数组ahe_result,用于存储最终的自适应直方图均衡化结果ahe_result = np.zeros_like(img)# 遍历不同的窗口大小,从50到200,步长为50
for window_size in range(50, 201, 50):# 对原始图像img进行自适应直方图均衡化操作,使用当前窗口大小window_sizeahe_img = adaptive_histogram_equalization(img, window_size)# 将每次处理后的图像ahe_img累加到ahe_result中ahe_result += ahe_img# 将ahe_result除以4取整,得到最终的自适应直方图均衡化结果
ahe_result //= 4

5.限制对比度自适应直方图均衡化

首先创建一个与原始图像img相同大小的全黑图像crhe_result,用于保存处理后的结果。然后,使用一个循环遍历多个窗口尺寸,依次调用限制对比度自适应直方图均衡化函数对原始图像进行处理,并将处理后的结果加到crhe_result中。在本例中,设置对比度限制因子clip_limit为2.0。
我们使用了不同尺寸的窗口,分别为50、100、150和200。最后将这四个结果取平均值作为最终结果,避免过大或过小的窗口对结果产生较大影响。

# 限制对比度自适应直方图均衡化
# 创建一个和原始图像大小相同的全零数组crhe_result,用于存储最终的限制对比度自适应直方图均衡化结果crhe_result = np.zeros_like(img)# 遍历不同的窗口大小,从50到200,步长为50
for window_size in range(50, 201, 50):# 对原始图像img进行限制对比度自适应直方图均衡化操作,使用当前窗口大小window_size和对比度限制参数2.0crhe_img = contrast_limited_adaptive_histogram_equalization(img, window_size, 2.0)# 将每次处理后的图像crhe_img累加到crhe_result中crhe_result += crhe_img# 将crhe_result除以4取整,得到最终的限制对比度自适应直方图均衡化结果
crhe_result //= 4

6.可视化显示结果

# 显示结果
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(12, 8))
ax[0].imshow(img, cmap='gray')
ax[0].set_title('Original1 Image')
ax[1].imshow(ahe_result, cmap='gray')
ax[1].set_title('AHE1 Image')
ax[2].imshow(crhe_result, cmap='gray')
ax[2].set_title('CRHE1 Image')
plt.show()

在这里插入图片描述

三、对比总结

直方图均衡化(Histogram Equalization)和自适应直方图均衡化(Adaptive Histogram Equalization)都是用于图像增强的技术,目的是改善图像的对比度和视觉效果。它们的主要区别在于处理图像的方式和局部性

直方图均衡化是一种全局的方法,它基于整个图像的灰度直方图来调整像素的灰度值分布。通过使灰度级别在图像中更均匀地分布,直方图均衡化可以增强图像的对比度和细节。它使用累积分布函数将原始图像中的灰度级别映射到一个新的灰度范围,从而实现图像的均衡化。

然而,直方图均衡化是一种全局的方法,它没有考虑到图像中不同区域的局部差异。这可能会导致图像的某些区域过度增强或细节丢失的问题。为了解决这个问题,自适应直方图均衡化应运而生。

自适应直方图均衡化是一种局部的方法,在处理图像时会考虑到不同区域的灰度分布情况。它将图像分成许多小区域,对每个区域独立地应用直方图均衡化。通过这种方式,自适应直方图均衡化可以更好地保留图像细节,并避免过度放大噪声。

自适应直方图均衡化的一种常见变体是自适应直方图均衡化(CLAHE),它在每个小区域中使用对比度限制来防止过度放大噪声。CLAHE的核心思想是将图像分成许多小块,然后对每个小块进行局部直方图均衡化,并对像素值进行裁剪以限制对比度的增强程度。通过这种方式,CLAHE在增强图像细节的同时有效控制了噪声的增强。

总而言之,直方图均衡化是一种全局的方法,通过整个图像的灰度直方图来增强图像对比度。自适应直方图均衡化是一种局部的方法,通过对图像的小块进行独立的直方图均衡化来增强图像,并通过对比度限制来控制噪声的放大

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/95315.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch相关概念

文章目录 前提倒排索引MySQL、ES的区别和关联IK分词器索引库mapping属性索引库的crud 文档的crudRestClientDSL查询DSL 查询种类DSL query 基本语法 搜索结构处理排序分页高亮RestClient 前提 开源的搜索引擎&#xff0c;从海量数据中快速找到需要的内容。&#xff08;分词检索…

关于小程序收集用户手机号行为的规范

手机号在日常生活中被广泛使用&#xff0c;是重要的用户个人信息&#xff0c;小程序开发者应在用户明确同意的前提下&#xff0c;依法合规地处理用户的手机号信息。 而部分开发者在处理用户手机号过程中&#xff0c;存在不规范收集行为&#xff0c;影响了用户的正常使用体验&a…

分模块开发的意义及开发步骤

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaweb 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 Maven进阶 一、分模块开发1.1分模块开发的意义1.2分模块开…

C++项目实战之演讲比赛流程管理系统

演讲比赛流程管理系统 1. 演讲比赛程序需求 1.1 比赛规则 学校举行一场演讲比赛&#xff0c;共有12个人参加。比赛共两轮&#xff0c;第一轮为淘汰赛&#xff0c;第二轮为决赛 每名选手都有对应的编号&#xff0c;如 10001 ~ 10012 比赛方式&#xff1a;分组比赛&#xff0…

如何使用CSS实现一个平滑过渡效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现平滑过渡效果⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚…

编程语言学习笔记-架构师和工程师的区别,PHP架构师之路

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责…

opencv图片换背景色

#include <iostream> #include<opencv2/opencv.hpp> //引入头文件using namespace cv; //命名空间 using namespace std;//opencv这个机器视觉库&#xff0c;它提供了很多功能&#xff0c;都是以函数的形式提供给我们 //我们只需要会调用函数即可in…

Streamlit 讲解专栏(十):数据可视化-图表绘制详解(上)

文章目录 1 前言2 st.line_chart&#xff1a;绘制线状图3 st.area_chart&#xff1a;绘制面积图4 st.bar_chart&#xff1a;绘制柱状图5 st.pyplot&#xff1a;绘制自定义图表6 结语 1 前言 在数据可视化的世界中&#xff0c;绘制清晰、易于理解的图表是非常关键的。Streamlit…

前端如何安全的渲染HTML字符串?

在现代的Web 应用中&#xff0c;动态生成和渲染 HTML 字符串是很常见的需求。然而&#xff0c;不正确地渲染HTML字符串可能会导致安全漏洞&#xff0c;例如跨站脚本攻击&#xff08;XSS&#xff09;。为了确保应用的安全性&#xff0c;我们需要采取一些措施来在安全的环境下渲染…

【山河送书第七期】:《强化学习:原理与Python实战》揭秘大模型核心技术RLHF!

《强化学习&#xff1a;原理与Python实战》揭秘大模型核心技术RLHF&#xff01; 一图书简介二RLHF是什么&#xff1f;三RLHF适用于哪些任务&#xff1f;四RLHF和其他构造奖励模型的方法相比有何优劣&#xff1f;五什么样的人类反馈才是好反馈&#xff1f;六如何减小人类反馈带来…

什么是异常处理

文章目录 异常处理介绍自定义异常页面文档:自定义异常页面说明 自定义异常页面-应用实例需求:代码实现 全局异常说明全局异常-应用实例需求:代码实现完成测试 自定义异常说明自定义异常-应用实例需求&#xff1a;代码实现完成测试 注意事项完成测试 异常处理 介绍 默认情况下…

使用 NLP 进行文本摘要

一、说明 文本摘要是为较长的文本文档生成简短、流畅且最重要的是准确摘要的过程。自动文本摘要背后的主要思想是能够从整个集合中找到最重要信息的一小部分&#xff0c;并以人类可读的格式呈现。随着在线文本数据的增长&#xff0c;自动文本摘要方法可能会非常有用&#xff0c…

mysql 数据备份和恢复

操作系统&#xff1a;22.04.1-Ubuntu mysql 版本&#xff1a;8.033 binlog 介绍 binlog 是mysql 二进制日志 binary log的简称&#xff0c;可以简单理解为数据的修改记录。 需要开启binlog,才会产生文件&#xff0c;mysql 8.0 默认开启,开启后可以在 /var/lib/mysql &#xff…

AJ-Captcha行为验证在vue中的使用

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 项目场景&#xff1a;由原先的验证码校验升级为行为验证校验 使用方法 提示&#xff1a;参考文档&#xff1a; 参考文档&#xff1a;vue使用AJ-Captcha文档 gitee地址&#xff1a;AJ-Captcha &…

什么是微服务?

2.微服务的优缺点 优点 单一职责原则每个服务足够内聚&#xff0c;足够小&#xff0c;代码容易理解&#xff0c;这样能聚焦一个指定的业务功能或业务需求&#xff1b;开发简单&#xff0c;开发效率提高&#xff0c;一个服务可能就是专一的只干一件事&#xff1b;微服务能够被小…

26、springboot的自动配置03--核心功能--自定义条件注解及使用

开发自己的自动配置------开发自己的条件注解 ★ 自定义条件注解 好处有两个&#xff1a; 1. 真正掌握Spring boot条件注解的本质。 2. 项目遇到一些特殊的需求时&#xff0c;也可以开发自己的自定义条件注解来解决问题。自定义条件注解&#xff1a; ▲ 所有自定义注解其实都…

ICT产教融合创新实训基地软件测试实训室建设方案

一 、系统概述 ICT产教融合创新&#xff0c;简单来说&#xff0c;就是信息与通信技术&#xff08;ICT&#xff09;与产业界、教育界的融合创新。这个概念强调了在现代社会中&#xff0c;信息技术与产业发展以及教育培训之间相互关联的重要性。 ICT产教融合创新的核心思想包括以…

lambda表达式

一&#xff0c;什么是lambda表达式 1.1 函数式接口 要想了解什么是lambda表达式&#xff0c;就必须得知道什么是函数式接口&#xff0c;函数式接口是指只包含一个抽象方法的接口。如果我们自己写一个函数时接口&#xff0c;最好在接口前添加Functionallnterface&#xff0c;和…

程序员如何利用公网远程访问查询本地硬盘【内网穿透】

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 公网远程访问本地硬盘文件【内网穿透】 文章目录 公网远程访问本地硬盘文件【内网穿透】前言1. 下载cpolar和Everything软件1.…

去掉鼠标系列之一: 语雀快捷键使用指南

其实应该是系列之二了&#xff0c;因为前面写了一个关于Interlij IDEA的快捷键了。 为什么要写这个了&#xff0c;主要是觉得一会儿用鼠标&#xff0c;一会儿键盘&#xff0c;一点儿不酷&#xff0c;我希望可以一直用键盘&#xff0c;抛开鼠标。后面陆续记录一下各个软件的快捷…