2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文

模型设计思路与创新点:

建模的时候应该先确定我们需要建立什么类的模型?优化类还是统计类?这个题需要大量的数据分析,因此我们可以建立一个统计学模型。

统计学建模思路:观察规律,建立模型,参数估计,显著度检验,置信度检验等。

这个题最核心的要求在于旅游模型的可持续性:既要对环境友好,又要对经济效益友好。

于是我想到可以使用SIR传染病模型最后趋于的稳态,和Logistic阻滞增长模型种群处于K/2的时候增速最快的节点来表征这个可持续性。

SIR传染病模型有三个状态变量,Logistic阻滞增长模型有一个状态变量,将两个结合,交互就可以得到一个新的微分方程组,有四个状态变量N(t),S(t),I(t),R(t),这是这篇论文最大的创新。N(t):时间 t 时的游客数量,S(t):未受影响的居民数量,I(t):当前正受到旅游负面影响的居民数量,R(t):已适应或不再受到旅游负面影响困扰的居民数量。

题目中提到:游客多了本地居民就会不高兴,所以我们用本地居民的抵抗人数来量化游客过多的负面效应。

两个模型怎么交互呢?我们这样设计:

W(t)  是游客活动量,用当地市场交通量来表示(网上有数据可以查得到)

C(t)  是基础设施的使用量,假设它正比于游客量,正比系数是2023年的全球碳排放量中旅游业排放的比例。

下面是模型的参数:

r表示游客增长率

K表示生态承载上限

δ表示居民的抵触情绪或负面评价对游客数量的“抑制效应”系数

β为传播率(正比于游客对居民压力的影响率)

γ为恢复或适应速率

σ表示生态效应对居民的正向或负向反馈作用系数

模型实现的效果:

我们用游客数量衡量旅游的经济效益,这是显然的:

(第一个方程)当游客数量N太多会降低游客的增速,被旅游业困扰的原住民数量增多也会降低游客的增速(这一点是我们的创新)

(第二个方程)被困扰的原住民的增速负相关于有不被困扰的原住民的数量

(第三个方程)被困扰的原住民的增速不仅被其它原住民和游客影响,还被生态效益E(t)所影响(这一点也是我们的创新)

(第四个方程)原住民会逐渐的习惯被困扰的状态,变成不被困扰的原住民

接下来我们建模生态效益:

(第五个方程)

总生态效益E(t)被游客人数N(t),交通量W(t)(交通量正像关于二氧化碳排放量),公共设施使用量C(t),我们假设每个人使用的设施是一个比值,使用2023年旅游业的碳排放量对所有行业占比来代替。

为了简化模型,考虑到几年来交通量变化不大,使用一个关于时间t的二次多项式来表示。

这是一个统计学模型,模型建立以后,我们可以用模型来表示回归曲线,题目中要求我们进行模型的稳定性分析,我们可以对参数进行参数估计和显著度检验,用参数的显著性作为模型的稳定性。

获取数据与回归:

设立完模型以后,我们需要收集数据,对数据拟合我们的模型,看看我们的模型拟合效果如何,显著度水平如何,如果显著度水平高,说明变量是起到作用的;如果拟合效果好,则可以用来预测。

数据我们通过2023年的阿拉斯加州旅游业报告和朱诺市的旅游业调研报告获取的,由于报告获取过程中没有原始数据,故我们根据报告中的相关参数获取了两种数据。第一种数据通过期望和正态性假设生成;第二种数据通过对原始的单条时间序列数据进行滑动窗口得到时间序列样本集。

报告原链接:

https://juneau.org/wp-content/uploads/2023/12/CBJ-Tourism-Survey-2023-Report-12.11.23.pdf

 a_visitor_report_7.pdf (alaska.gov)

 sustainabletravel.org

这是数据来源的一张采集截图:

后面的内容只在第一种数据上介绍,对于第二种数据我们只构建了数据集,还没来得及做回归分析。

模型结果展示:

下面简单展示我们模型的结果(线性回归):

N(t)vs.t曲线大体上呈现一个缓慢上升的趋势,因为很多人会涌入景点。

S(t)vs.t):随时间有下降,说明游客涌入时,当地居民很快就会受到影响。

 I(t)vs.t):被影响的居民先增多再减少

R(t)vs.t:理论上上升,因为更多居民逐渐适应游客的涌入。

C(t)vs.t:若交通市场人流总量随时间总体增加,则显现出增长态势。

W(t)vs.t:由于我们定义,只要N(t)随时间变化,W(t)的变化趋势也相似。

回归结果与显著度分析:

最后是我们的回归结果和显著度分析:

变量

α

β

Std.Error(β

)

t值

p值

结论

N(t)

1.60E+06

5400

1400

3.86

0.00012

显著(p<0.01)

S(t)

4.50E+05

250.8

67

3.74

0.00021

显著(p<0.01)

I(t

9.93E+05

2331.6

112

20.78

1.51E69

显著(p<0.01)

R(t)

3.36E+05

2629

120

21.92

4.77E75

显著(p<0.01)

C(t)

1.48E+06

2200

23

95

1.00E300

显著(p<0.01)

W(t)

1.20E+05

1100

12

91

3.00E290

显著(p<0.01)

可以看到:对任何一个状态变量,模型都是显著的,说明模型变量选择还是合理的。

我们设立的模型思路清晰且简洁,具有创新性和专业性,且我们已经写好了一篇成品论文,附带了两种数据集和模型的回归代码,借鉴我们的论文会让您的论文更出彩。下面附上我们的成品论文的目录。更多内容请点击如下链接:

美赛B题成品论文-基于SIR与Logistic模型- 首发,可直接用于论文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/9597.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FireFox | Google Chrome | Microsoft Edge 禁用更新 final版

之前的方式要么失效&#xff0c;要么对设备有要求&#xff0c;这次梳理一下对设备、环境几乎没有要求的通用方式&#xff0c;universal & final 版。 1.Firefox 方式 FireFox火狐浏览器企业策略禁止更新_火狐浏览器禁止更新-CSDN博客 这应该是目前最好用的方式。火狐也…

关联传播和 Python 和 Scikit-learn 实现

文章目录 一、说明二、什么是 Affinity Propagation。2.1 先说Affinity 传播的工作原理2.2 更多细节2.3 传播两种类型的消息2.4 计算责任和可用性的分数2.4.1 责任2.4.2 可用性分解2.4.3 更新分数&#xff1a;集群是如何形成的2.4.4 估计集群本身的数量。 三、亲和力传播的一些…

使用 postman 测试思源笔记接口

思源笔记 API 权鉴 官方文档-中文&#xff1a;https://github.com/siyuan-note/siyuan/blob/master/API_zh_CN.md 权鉴相关介绍截图&#xff1a; 对应的xxx&#xff0c;在软件中查看 如上图&#xff1a;在每次发送 API 请求时&#xff0c;需要在 Header 中添加 以下键值对&a…

万物皆有联系:驼鸟和布什

布什&#xff1f;一块布十块钱吗&#xff1f;不是&#xff0c;大家都知道&#xff0c;美国有两个总统&#xff0c;叫老布什和小布什&#xff0c;因为两个布什总统&#xff08;父子俩&#xff09;&#xff0c;大家就这么叫来着&#xff0c;目的是为了好区分。 布什总统的布什&a…

C++ ——— 仿函数

目录 何为仿函数 仿函数和模板的配合使用 何为仿函数 代码演示&#xff1a; class Add { public:int operator()(int x, int y){return x y;} }; 这是一个 Add 类&#xff0c;类里面有一个公有成员函数重载&#xff0c;重载的是括号 那么调用的时候&#xff1a; Add ad…

Charles 4.6.7 浏览器网络调试指南:流量过滤与分析(六)

1. 概述 在网络调试和优化过程中&#xff0c;Charles 不仅可以实现简单的网络抓包操作&#xff0c;还支持更高级的抓包技巧和流量分析功能。这些功能能够帮助开发者深入挖掘网络请求的细节&#xff0c;为复杂问题提供有效的解决方案。本文将重点讲解 Charles 的过滤规则、自定…

Haproxy入门学习二

一、Haproxy的算法 1.haproxy通过固定参数balance指明对后端服务器的调度算法&#xff0c;其中balance参数可以配置在listen或backend选项中 2.haproxy的调度算法分为静态和动态调度算法&#xff0c;其中有些算法可以根据参数在静态和动态算法中相互转换 3.静态算法&#xff1a…

程序地址空间

程序地址空间回顾&#xff08;这真的是吗&#xff1f;&#xff09; 我们之前学习C/C的时候是否听过&#xff1a;对于自己的C/C程序&#xff0c;我们默认认为自己的内存地址空间是&#xff1a; 代码区&#xff08;Text Segment&#xff09;&#xff1a;存放程序的机器指令代码&…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.21 索引宗师:布尔索引的七重境界

1.21 索引宗师&#xff1a;布尔索引的七重境界 目录 #mermaid-svg-Iojpgw5hl0Ptb9Ti {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Iojpgw5hl0Ptb9Ti .error-icon{fill:#552222;}#mermaid-svg-Iojpgw5hl0Ptb9Ti .…

nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)

一、安装nvm 1. 下载nvm 点击 网盘下载 进行下载 2、双击下载好的 nvm-1.1.12-setup.zip 文件 3.双击 nvm-setup.exe 开始安装 4. 选择我接受&#xff0c;然后点击next 5.选择nvm安装路径&#xff0c;路径名称不要有空格&#xff0c;然后点击next 6.node.js安装路径&#…

【Matlab高端绘图SCI绘图模板】第006期 对比绘柱状图 (只需替换数据)

1. 简介 柱状图作为科研论文中常用的实验结果对比图&#xff0c;本文采用了3组实验对比的效果展示图&#xff0c;代码已调试好&#xff0c;只需替换数据即可生成相关柱状图&#xff0c;为科研加分。通过获得Nature配色的柱状图&#xff0c;让你的论文看起来档次更高&#xff0…

CTFSHOW-WEB入门-命令执行29-32

题目&#xff1a;web 29 题目&#xff1a;解题思路&#xff1a;分析代码&#xff1a; error_reporting(0); if(isset($_GET[c])){//get一个c的参数$c $_GET[c];//赋值给Cif(!preg_match("/flag/i", $c)){eval($c);//if C变量里面没有flag&#xff0c;那么就执行C…

【以音频软件FFmpeg为例】通过Python脚本将软件路径添加到Windows系统环境变量中的实现与原理分析

在Windows系统中&#xff0c;你可以通过修改环境变量 PATH 来使得 ffmpeg.exe 可在任意路径下直接使用。要通过Python修改环境变量并立即生效&#xff0c;如图&#xff1a; 你可以使用以下代码&#xff1a; import os import winreg as reg# ffmpeg.exe的路径 ffmpeg_path …

LCR 139.训练计划 I

目录 题目过程解法双指针法&#xff08;两端开始&#xff09;快慢指针 题目 教练使用整数数组 actions 记录一系列核心肌群训练项目编号。为增强训练趣味性&#xff0c;需要将所有奇数编号训练项目调整至偶数编号训练项目之前。请将调整后的训练项目编号以 数组 形式返回。 过…

《多阶段渐进式图像修复》学习笔记

paper&#xff1a;2102.02808 GitHub&#xff1a;swz30/MPRNet: [CVPR 2021] Multi-Stage Progressive Image Restoration. SOTA results for Image deblurring, deraining, and denoising. 目录 摘要 1、介绍 2、相关工作 2.1 单阶段方法 2.2 多阶段方法 2.3 注意力机…

21.2-工程中添加FreeRTOS(掌握) 用STM32CubeMX添加FreeRTOS

这个是全网最详细的STM32项目教学视频。 第一篇在这里: 视频在这里 STM32智能小车V3-STM32入门教程-openmv与STM32循迹小车-stm32f103c8t6-电赛 嵌入式学习 PID控制算法 编码器电机 跟随 **V3:HAL库开发、手把手教学下面功能&#xff1a;PID速度控制、PID循迹、PID跟随、遥控、…

gitee——报错修改本地密码

有时候当我们向远端push本地的仓库时会有一些报错的行为。 如下&#xff1a; 这是因为我们在gitee修改了密码时&#xff0c;本地还没有更新提交&#xff0c;总是报错 解决修改密码报错 如下&#xff1a; 1.在本地点击搜索栏找到控制面板 步骤如下

联想Y7000+RTX4060+i7+Ubuntu22.04运行DeepSeek开源多模态大模型Janus-Pro-1B+本地部署

直接上手搓了&#xff1a; conda create -n myenv python3.10 -ygit clone https://github.com/deepseek-ai/Janus.gitcd Januspip install -e .pip install webencodings beautifulsoup4 tinycss2pip install -e .[gradio]pip install pexpect>4.3python demo/app_januspr…

批量卸载fnm中已经安装的所有版本

直接上代码 fnm list | awk -F NR>1 {print line} {line$2} | xargs -n 1 -I {} fnm uninstall {}原理 fnm list 列出 fnm 中所有已经安装的 node 版本 awk -F NR>1 {print line} {line$2} 以空格分隔-F {line$2}&#xff0c;取从左到右第 2 段&#xff08;v22.11…

(done) MIT6.S081 2023 学习笔记 (Day6: LAB5 COW Fork)

网页&#xff1a;https://pdos.csail.mit.edu/6.S081/2023/labs/cow.html 任务1&#xff1a;Implement copy-on-write fork(hard) (完成) 现实中的问题如下&#xff1a; xv6中的fork()系统调用会将父进程的用户空间内存全部复制到子进程中。如果父进程很大&#xff0c;复制过程…