ONNX版本YOLOV5-DeepSort (rknn版本已经Ready)

目录

1. 前言

2. 储备知识

3. 准备工作

4. 代码修改的地方

5.结果展示


1. 前言

        之前一直在忙着写文档,之前一直做分类,检测和分割,现在看到跟踪算法,花了几天时间找代码调试,看了看,展示效果比单纯的检测要更加的炸裂一点。

2. 储备知识

        DeepSORT(Deep Learning to Track Multi-Object in SORT)是一种基于深度学习的多目标跟踪算法,它结合了深度学习的目标检测和传统的轨迹跟踪方法,旨在实现在复杂场景中准确和稳定地跟踪多个移动目标。以下是关于DeepSORT的检测思想、特点和应用方面的介绍:

        检测思想: DeepSORT的核心思想是结合深度学习目标检测和轨迹跟踪方法,以实现多目标跟踪。首先,利用深度学习目标检测模型(如YOLO、Faster R-CNN等)检测出每一帧图像中的所有目标物体,并提取其特征。然后,通过应用传统的轨迹跟踪算法(如卡尔曼滤波器和轨迹关联等),将目标在连续帧之间进行关联,从而生成每个目标的运动轨迹。

        特点:

  1. 多目标跟踪: DeepSORT专注于同时跟踪多个目标,适用于需要同时监测和追踪多个物体的场景,如交通监控、人群管理等。
  2. 深度特征: 通过使用深度学习模型提取目标的特征,DeepSORT可以更准确地表示目标,从而提高跟踪的精度和鲁棒性。
  3. 轨迹关联: DeepSORT使用传统的轨迹关联技术来连接不同帧之间的目标,确保在物体出现、消失、重叠等情况下仍能准确跟踪。
  4. 实时性能: DeepSORT设计用于实时应用,可以在视频流中高效地进行目标跟踪,适用于要求实时性能的应用场景。

需要了解的算法内容:详细介绍

  1. 目前主流的目标跟踪算法都是基于Tracking-by-Detecton策略,即基于目标检测的结果来进行目标跟踪。DeepSORT运用的就是这个策略,上面的视频是DeepSORT对人群进行跟踪的结果,每个bbox左上角的数字是用来标识某个人的唯一ID号。
  2. 这里就有个问题,视频中不同时刻的同一个人,位置发生了变化,那么是如何关联上的呢?答案就是匈牙利算法和卡尔曼滤波。

    匈牙利算法可以告诉我们当前帧的某个目标,是否与前一帧的某个目标相同。卡尔曼滤波可以基于目标前一时刻的位置,来预测当前时刻的位置,并且可以比传感器(在目标跟踪中即目标检测器,比如Yolo等)更准确的估计目标的位置。

3. 准备工作

        基础代码:黄老师的github,参考的是这位博主的,我做了相应的修改

4. 代码修改的地方

具体需要修改的有两个py文件

(1) main.py文件,里面的检测器yolo用onnx做推理,onnx模型参考我的博文yolov5转rknn(聪明的你应该会的)

import cv2
import torch
import numpy as np
import onnxruntime as rtdef sigmoid(x):return 1 / (1 + np.exp(-x))def nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Argumentsboxes: ndarray, boxes of objects.scores: ndarray, scores of objects.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]y = boxes[:, 1]w = boxes[:, 2] - boxes[:, 0]h = boxes[:, 3] - boxes[:, 1]areas = w * horder = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= 0.45)[0]order = order[inds + 1]keep = np.array(keep)return keepdef process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = sigmoid(input[..., 4])box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = sigmoid(input[..., 5:])box_xy = sigmoid(input[..., :2])*2 - 0.5col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy *= int(img_size/grid_h)box_wh = pow(sigmoid(input[..., 2:4])*2, 2)box_wh = box_wh * anchorsbox = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!# Argumentsboxes: ndarray, boxes of objects.box_confidences: ndarray, confidences of objects.box_class_probs: ndarray, class_probs of objects.# Returnsboxes: ndarray, filtered boxes.classes: ndarray, classes for boxes.scores: ndarray, scores for boxes."""box_classes = np.argmax(box_class_probs, axis=-1)box_class_scores = np.max(box_class_probs, axis=-1)pos = np.where(box_confidences[..., 0] >= 0.5)boxes = boxes[pos]classes = box_classes[pos]scores = box_class_scores[pos]return boxes, classes, scoresdef yolov5_post_process(input_data):masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],[59, 119], [116, 90], [156, 198], [373, 326]]boxes, classes, scores = [], [], []for input,mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)boxes = np.concatenate(boxes)boxes = xywh2xyxy(boxes)classes = np.concatenate(classes)scores = np.concatenate(scores)nboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])if not nclasses and not nscores:return None, None, Noneboxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)return boxes, classes, scoresdef letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):# Resize and pad image while meeting stride-multiple constraintsshape = img.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn img, ratio, (dw, dh)def clip_coords(boxes, img_shape):# Clip bounding xyxy bounding boxes to image shape (height, width)boxes[:, 0].clamp_(0, img_shape[1])  # x1boxes[:, 1].clamp_(0, img_shape[0])  # y1boxes[:, 2].clamp_(0, img_shape[1])  # x2boxes[:, 3].clamp_(0, img_shape[0])  # y2def xywh2xyxy(x):# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-righty = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn yCLASSES  = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink','refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']def preprocess(img, img_size):img0 = img.copy()img = letterbox(img, new_shape=img_size)[0]img = img[:, :, ::-1].transpose(2, 0, 1)img = np.ascontiguousarray(img).astype(np.float32)img = torch.from_numpy(img)img /= 255.0if img.ndimension() == 3:img = img.unsqueeze(0)return img0, imgdef draw(image, boxes, scores, classes):"""Draw the boxes on the image.# Argument:image: original image.boxes: ndarray, boxes of objects.classes: ndarray, classes of objects.scores: ndarray, scores of objects.all_classes: all classes name."""for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = box# print('class: {}, score: {}'.format(CLASSES[cl], score))# print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))top = int(top)left = int(left)right = int(right)bottom = int(bottom)cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)def detect(im, img_size, sess, input_name, outputs_name):im0, img = preprocess(im, img_size)input_data = onnx_inference(img.numpy(), sess, input_name, outputs_name)boxes, classes, scores = yolov5_post_process(input_data)if boxes is not None:draw(im, boxes, scores, classes)cv2.imshow('demo', im)cv2.waitKey(1)def onnx_inference(img, sess, input_name, outputs_name):# 模型推理:模型输出节点名,模型输入节点名,输入数据(注意节点名的格式!!!!!)outputs = sess.run(outputs_name, {input_name: img})input0_data = outputs[0]input1_data = outputs[1]input2_data = outputs[2]input0_data = input0_data.reshape([3, 80, 80, 85])input1_data = input1_data.reshape([3, 40, 40, 85])input2_data = input2_data.reshape([3, 20, 20, 85])input_data = list()input_data.append(np.transpose(input0_data, (1, 2, 0, 3)))input_data.append(np.transpose(input1_data, (1, 2, 0, 3)))input_data.append(np.transpose(input2_data, (1, 2, 0, 3)))return input_datadef load_onnx_model():# onnx模型前向推理sess = rt.InferenceSession('./weights/modified_yolov5s.onnx')# 模型的输入和输出节点名,可以通过netron查看input_name = 'images'outputs_name = ['396', '440', '484']return sess, input_name, outputs_nameif __name__ == '__main__':# create onnx_modelsess, input_name, outputs_name = load_onnx_model()# input_model_sizeimg_size = 640# read videovideo = cv2.VideoCapture('./video/cut3.avi')print("Loaded video ...")frame_interval = 2  # 间隔帧数,例如每隔10帧获取一次frame_count = 0while True:# 读取每帧图片_, im = video.read()if frame_count % frame_interval == 0:if im is None:break# 缩小尺寸,1920x1080->960x540im = cv2.resize(im, (640, 640))list_bboxs = []# det_objectdetect(im, img_size, sess, input_name, outputs_name)frame_count += 1video.release()cv2.destroyAllWindows()

(2) feature_extractor.py的修改:

这里有4种推理情况:ckpt.t7是ReID( Re-identification利用算法),在图像库中找到要搜索的目标的技术,所以它是属于图像检索的一个子问题。

        (1) 动态的batch_size推理:由于检测到的目标是多个object,在本项目的代码REID推理中,会将目标通过torch.cat连接起来,变成(n, 64, 128)的形状,所以需要用动态的onnx模型

        (2)那我就想要静态的怎么办,安排!!!,思路就是将cat的拆分开就行了,shape变成(1, 64 , 128),单个推理后将结果cat起来就行了,easy的。

重要!!!!ckpt文件转onnx的代码

import os
import cv2
import time
import argparse
import torch
import numpy as np
from deep_sort import build_tracker
from utils.draw import draw_boxes
from utils.parser import get_config
from tqdm import tqdmif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml", help='Configure tracker')parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True, help='Run in CPU')args = parser.parse_args()cfg = get_config()cfg.merge_from_file(args.config_deepsort)use_cuda = args.use_cuda and torch.cuda.is_available()torch.set_grad_enabled(False)model = build_tracker(cfg, use_cuda=False)model.reid = Truemodel.extractor.net.eval()device = 'cpu'output_onnx = 'deepsort.onnx'# ------------------------ export -----------------------------print("==> Exporting model to ONNX format at '{}'".format(output_onnx))input_names = ['input']output_names = ['output']input_tensor = torch.randn(1, 3, 128, 64, device=device)torch.onnx.export(model.extractor.net, input_tensor, output_onnx, export_params=True, verbose=False,input_names=input_names, output_names=output_names, opset_version=13,do_constant_folding=True)

        (3)但是要转rknn怎么办,ckpt.t7转onnx后,有一个ReduceL2,不支持量化,我就转的fp16(在RK3588上是可以的,rk1808不知道行不行),不过我尝试了将最后两个节点删除,对结果好像没有什么影响(用的是cut后的onnx推理),有懂的朋友可以解释一下!!!

        (4) 就是rknn的推理,这里就不展示了,需要的私聊我吧

import torch
import torchvision.transforms as transforms
import numpy as np
import cv2
# import onnxruntime as rt
# from rknnlite.api import RKNNLiteclass Extractor(object):def __init__(self, model_path):self.model_path = model_pathself.device = "cpu"self.size = (64, 128)self.norm = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),])def _preprocess(self, im_crops):"""TODO:1. to float with scale from 0 to 12. resize to (64, 128) as Market1501 dataset did3. concatenate to a numpy array3. to torch Tensor4. normalize"""def _resize(im, size):return cv2.resize(im.astype(np.float32) / 255., size)im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(0) for im in im_crops], dim=0).float()return im_batchdef __call__(self, im_crops):im_batch = self._preprocess(im_crops)# sess = rt.InferenceSession(self.model_path)# 模型的输入和输出节点名,可以通过netron查看# input_name = 'input'# outputs_name = ['output']# (1)动态输出# features = sess.run(outputs_name, {input_name: im_batch.numpy()})# print('features:', np.array(features)[0, :, :].shape)# return np.array(features)[0, :, :]# (2)静态态输出# sort_results = []# n = im_batch.numpy().shape[0]# for i in range(n):#     img = im_batch.numpy()[i, :, :].reshape(1, 3, 128, 64)#     feature = sess.run(outputs_name, {input_name: img})#     feature = np.array(feature)#     sort_results.append(feature)# features = np.concatenate(sort_results, axis=1)[0, :, :]# print(features.shape)# return np.array(features)# (3)去掉onnx的最后两个节点的静态模型输出# input_name = 'input'# outputs_name = ['204']# sort_results = []# n = im_batch.numpy().shape[0]# for i in range(n):#     img = im_batch.numpy()[i, :, :].reshape(1, 3, 128, 64)#     feature = sess.run(outputs_name, {input_name: img})#     feature = np.array(feature)#     sort_results.append(feature)# features = np.concatenate(sort_results, axis=1)[0, :, :]# print(features.shape)# return np.array(features)# (4 )rk模型修改# rknn_lite = RKNNLite()# rknn_lite.load_rknn('./weights/ckpt_fp16.rknn')# ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)# if ret != 0:#     print('Init runtime environment failed')#     exit(ret)# print('done')# sort_results = []# n = im_batch.numpy().shape[0]# for i in range(n):#    img = im_batch.numpy()[i, :, :].reshape(1, 3, 128, 64)#    feature = self.model_path.inference(inputs=[img])#   feature = np.array(feature)#    sort_results.append(feature)# features = np.concatenate(sort_results, axis=1)[0, :, :]# print(features.shape)# return np.array(features)

5.结果展示

        onnx的转换结果(测试视频地址)

 

检测结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96171.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DevOps系列文章之 GitlabCICD自动化部署SpringBoot项目

一、概述 本文主要记录如何通过Gitlab CI/CD自动部署SpringBoot项目jar包。 二、前期准备 准备三台 CentOS7服务器&#xff0c;分别部署以下服务&#xff1a; 序号系统IP服务1CentOS7192.168.56.10Gitlab2CentOS7192.168.56.11Runner &#xff08;安装Docker&#xff09;3Cen…

Seata简介

1、简介 Seata是一个开源的分布式事务解决方案&#xff0c;用于解决分布式系统中的事务一致性问题。它提供了高性能和高可靠性的分布式事务支持&#xff0c;可以在微服务架构中保证数据的一致性和可靠性。 Seata的核心概念包括三个组件&#xff1a;事务协调器&#xff08;Tra…

如何正确下载tomcat???

亲爱的小伙伴&#xff0c;千万别再去找下网站下载啦&#xff0c;这样詪容易携带病毒。 我们去官方网址下载。 Apache Tomcat - Welcome! 最后下载解压即可。。。

【变形金刚02】注意机制以及BERT 和 GPT

一、说明 我已经解释了什么是注意力机制&#xff0c;以及与转换器相关的一些重要关键字和块&#xff0c;例如自我注意、查询、键和值以及多头注意力。在这一部分中&#xff0c;我将解释这些注意力块如何帮助创建转换器网络&#xff0c;注意、自我注意、多头注意、蒙面多头注意力…

无涯教程-Perl - undef函数

描述 此函数未定义EXPR的值。用于标量,列表,哈希,函数或类型范围。在带有诸如undef $hash {$key}之类的语句的哈希上使用&#xff1b;实际上将指定键的值设置为未定义的值。 如果要从哈希中删除元素,请使用delete函数。 语法 以下是此函数的简单语法- undef EXPRundef返回…

IronPDF for .NET Crack

IronPDF for .NET Crack ronPDF现在将等待HTML元素加载后再进行渲染。 IronPDF现在将等待字体加载后再进行渲染。 添加了在绘制文本时指定旋转的功能。 添加了在保存为PDFA时指定自定义颜色配置文件的功能。 IronPDF for.NET允许开发人员在C#、F#和VB.NET for.NET Core和.NET F…

QT实现天气预报

1. MainWindow类设计的成员变量和方法 public: MainWindow(QWidget* parent nullptr); ~MainWindow(); protected: 形成文本菜单来用来右键关闭窗口 void contextMenuEvent(QContextMenuEvent* event); 鼠标被点击之后此事件被调用 void mousePressEvent(QMouseEv…

软件测试项目实战,电商业务功能测试点汇总(全覆盖)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 支付功能怎么测试…

如何进行远程debug?

文章目录 前言一、使用步骤1.首先通过nohup在启动jar包的我们可以添加参数&#xff1a;2.具体参数的含义如下&#xff1a;3. 查询监听的端口&#xff1a; 前言 在工作中&#xff0c;排查问题我们经常需要进行debug&#xff0c;而远程debug能够方便的帮助我们排查线上的问题。 …

大数据平台运维实训室建设方案

一、概况 本实训室的主要目的是培养大数据平台运维项目的实践能力,以数据计算、分析、挖掘和可视化的案例训练为辅助。同时,实训室也承担相关考评员与讲师培训考试、学生认证培训考试、社会人员认证培训考试、大数据技能大赛训练、大数据专业课程改革等多项任务。 实训室旨在培…

Chrome

Chrome 简介下载 简介 Chrome 是由 Google 开发的一款流行的网络浏览器。它以其快速的性能、强大的功能和用户友好的界面而闻名&#xff0c;并且在全球范围内被广泛使用。Chrome 支持多种操作系统&#xff0c;包括 Windows、macOS、Linux 和移动平台。 Chrome官网: https://ww…

【Django】Task1安装python环境及运行项目

【Django】Task1安装python环境及运行项目 写在最前 8月份Datawhale组队学习&#xff0c;在这个群除我佬的时代&#xff0c;写一下blog记录学习过程。 参考资源&#xff1a; 学习项目github&#xff1a;https://github.com/Joe-2002/sweettalk-django4.2 队长博客&#xff1a…

【TypeScript】tsc -v 报错 —— 在此系统上禁止运行脚本

在 VS Code 终端中执行 tsc -v &#xff0c;报错 —— 在此系统上禁止运行脚本 然后 windows x &#xff0c;打开终端管理员&#xff0c;出现同样的问题 解决方法&#xff1a; 终端&#xff08;管理员&#xff09;执行以下命令&#xff1a; 出现 RemoteSigned 则代表更改成功…

广州华锐互动:奶牛难产原因及救治VR仿真实训系统

奶牛难产是一种常见的疾病&#xff0c;对奶牛的健康和生产造成很大的影响。为了解决这一问题&#xff0c;许多奶牛养殖场开始采用VR仿真技术来培训奶牛兽医&#xff0c;帮助学生更好地理解奶牛养殖的实际过程&#xff0c;提高他们的实践能力的教学方式。 VR技术开发公司广州华锐…

Java二分法查找

二分法&#xff1a;首先需要一个由小到大排序好的数组&#xff0c;先找到其中间值&#xff0c;然后进行比较如果比较中间值大的话则向前找。如果比要找的小&#xff0c;则向后找。 代码实现&#xff1a; //定义查询方法 public static int searchTarget(int[] nums, int targ…

centos安装elasticsearch7.9

安装es 下载elasticsearch安装包解压安装包,并修改配置文件解压进入目录修改配置文件 添加用户&#xff0c;并修改所有者切换用户&#xff0c;运行es如何迁移旧版本的数据 下载elasticsearch安装包 下载地址如下&#xff0c;版本号可以替换成自己想要的。 这里需要注意一点&am…

excel中定位条件,excel中有哪些数据类型、excel常见错误值、查找与替换

一、如何定位条件 操作步骤&#xff1a;开始 - 查找和选择 - 定位条件&#xff08;ctrl G 或 F5&#xff09; 注&#xff1a;如果F5不可用&#xff0c;可能是这个快捷键被占用了 案例&#xff1a;使用定位条件选择取余中空单元格&#xff0c;填入100&#xff0c;按组合键ct…

改进YOLO系列:2.添加ShuffleAttention注意力机制

添加ShuffleAttention注意力机制 1. ShuffleAttention注意力机制论文2. ShuffleAttention注意力机制原理3. ShuffleAttention注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. ShuffleAttention注意力机制论文 论文题目:SA-NET: SHUFFLE ATTENTION …

SAP安全库存-安全库存共享、安全库存简介

SAP系统中的安全库存用于管理计划外和计划内的库存需求,在某些行业中,由于不同的情况,如意外损耗、损坏、环境问题、制造工艺问题、需求增加等,通常会出现意外的库存需求。 SAP提供了维护安全库存的处理方式来处理这样的问题,安全库存的字段信息在主数据视图中,在物料需…

【学习笔记之vue】These dependencies were not found:

These dependencies were not found:方案一 全部安装一遍 我们先浅试一个axios >> npm install axios 安装完报错就没有axios了&#xff0c;验证咱们的想法没有问题&#xff0c;实行&#xff01; ok