图神经网络 day2 图的分类

图神经网络基础算法

  • 1 GCN
  • 2 GraphSAGE
    • 2.1 采样:采样固定长度的邻居
    • 2.2 聚合
    • 2.3 GraphSAGE_minibatch
    • 2.4 GraphSAGE_embedding
  • 3 GAT
  • 4. 图网络的分类
    • 4.1 递归图神经网络 RGNN
    • 4.2 图卷积神经网络GCN
    • 4.3 图注意力网络 GAT
    • 4.4 图自动编码 GAE
    • 4.5 图时空网络 GSTN
    • 4.6 图生成网络 GGN
    • 4.7 图强化学些 GRL
    • 4.8 图对抗方法GAM
    • 4.9 更通用的框架
      • 4.9.1 消息传递网络 MPNN
      • 4.9.2 非局部神经网络 NLNN
      • 4.9.3 图神经网络 GN
        • MPNN应用于GN
        • NLNN应用于GN
    • 4.10 其他图
        • 1. 异构图
        • 2. 二部图
        • 3. 多维图
        • 4. 符号图
        • 5. 超图
        • 6. 动态图

1 GCN

公式:

image-20230731152025610

image-20230731154432175

image-20230731154641628

节点的特征从C维(X1)——》F维(Z1),并 进行softmax操作,得到每一个节点对应的label(Y1)

2 GraphSAGE

image-20230731164704170

image-20230815093721585

实例:

  1. 聚合周围邻居信息(领域特征),下图是求平均值
  2. 把邻居信息拼接到一起,再经过一个可学习的w参数

image-20230815093816863

2.1 采样:采样固定长度的邻居

image-20230815094233042

节点4是单向的,所以不考虑

image-20230815094435073

2.2 聚合

要满足以下性质:

  1. 聚合函数是对称的
  2. 聚合函数的输入和顺序是不变的

image-20230815094642143

2.3 GraphSAGE_minibatch

Minbatch : GraphSAGE采用聚合邻居,和GCN使用全图方式,变成采样。这样在minbatch下,可以不使用全图信息,这使得在大规模图上训练变得可行。把大图转换成小图

image-20230815095311066

例子

image-20230815095447037

image-20230815095835128

2.4 GraphSAGE_embedding

image-20230815100141336

作者提出的假设:如果这两个节点很近,那么他们的表征应该是相似的,反之,则他们的表征会有所不同

3 GAT

image-20230815140838605

求得节点i和周围节点的attention系数,再通过系数与邻居节点加权求和,那么就求得了该节点聚合周围节点后的特征。

image-20230815141100183

多头注意力机制

image-20230815141418872

三个节点表示了三类特征

image-20230815141634715

4. 图网络的分类

image-20230815142038642

image-20230815142124149

image-20230815142218084

4.1 递归图神经网络 RGNN

image-20230815170529400

递归和卷积都是学习特征,很明显,卷积图神经网络的卷积层参数可以是不一致的的

4.2 图卷积神经网络GCN

image-20230815170644973

得到节点有序序列

4.3 图注意力网络 GAT

4.4 图自动编码 GAE

GAE:encoder用GCN替换,得出的特征矩阵Z,decoder替换成Z的转置,通过转置生成的图与原图比较得出最小化结构性误差,通过最小损失函数可以得出GCN的参数

image-20230815171957587

VAE课程,李宏毅老师课程∶
https://www.bilibili.com/video/BV1tZ4y1L7gu?from=search&seid=15594710630639930905

4.5 图时空网络 GSTN

同时考虑图的空间性和时间维度·比如在交通邻域中﹐速度传感器会随时间变化的时间维度﹐不同的传感器之间也会形成连接的空间维度的边。
当前的许多方法都应用GCN来捕获图的依赖性,使用一些RNN或CNN对时间依赖性建模。

4.6 图生成网络 GGN

通过RNN或者GAN的方式生成网络。图生成网络的
一个有前途的应用领域是化合物合成。在化学图中﹐原子被视为节点﹐化学键被视为边·任务是发现具有某些化学和物理性质的新的可合成分子。

4.7 图强化学些 GRL

通过RNN或者GAN的方式生成网络。图生成网络的
一个有前途的应用领域是化合物合成。在化学图中﹐原子被视为节点﹐化学键被视为边·任务是发现具有某些化学和物理性质的新的可合成分子。

4.8 图对抗方法GAM

GAN的思想﹐生成器生成样本﹐分类器去判别样本。

4.9 更通用的框架

  1. MPNN∶图神经网络和图卷积/ Message Passing Neural Networks
  2. NLNN︰统一Attention/ Non-local Neural Networks
  3. GN︰统一以上/ Graph Networks

image-20230815172729741

image-20230815172736534

4.9.1 消息传递网络 MPNN

image-20230815172851410

Mt:聚合周围邻居信息

Ut:更新节点在下一层的特征表示

前面这两部分就跟GraphSAGE相似;最后,组合在一起就成了图的表示y hat。

4.9.2 非局部神经网络 NLNN

image-20230815173337490

f()求的就是节点i和相邻节点的attention系数,再求g()得出的该节点的特征,再归一化就是下一层的特征表示yi‘。

4.9.3 图神经网络 GN

image-20230815173741029

一个GN块包含三个更新函数函数φ和三个聚合函数ρ,各符号意义如下图所示:

image-20230815173909499

一个例子:Vsk:sender node;Vrk:receiver node;

image-20230815174209304

计算流程如下:

image-20230815174139184

整个算法的流程:

image-20230815174727391

MPNN应用于GN

image-20230815175350153

NLNN应用于GN

image-20230815175511573

4.10 其他图

image-20230815175928347

1. 异构图

不同节点构成的图

image-20230815180118699

2. 二部图

将图中节点分为两部分,每一边不跟自己相连

image-20230815180156598

3. 多维图

多种关系所组成的图

image-20230815180243234

4. 符号图

图之间的连接有正反符号

image-20230815180318206

5. 超图

一条边包含两个以上的节点。每个边所包含的顶点个数都是相同且为k个的,就可以被称为k阶超图,常见的图就是2阶超图。

image-20230815180426199

6. 动态图

image-20230815180457324

上面提到的图是静态的,观察时节点之间的连接是固定的。但是,在许多实际应用中,随着新节点被添加到图中,图在不断发展,并且新边也在不断出现。例如,在诸如Facebook的在线社交网络中,用户可以不断与他人建立友谊,新用户也可以随时加入Facebook。这些类型的演化图可以表示为动态图,其中每个节点或边都与时间戳关联。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96624.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv-目标追踪

import argparse import time import cv2 import numpy as np# 配置参数 ap argparse.ArgumentParser() ap.add_argument("-v", "--video", typestr,help"path to input video file") ap.add_argument("-t", "--tracker", …

linux系统服务学习(六)FTP服务学习

文章目录 FTP、NFS、SAMBA系统服务一、FTP服务概述1、FTP服务介绍2、FTP服务的客户端工具3、FTP的两种运行模式(了解)☆ 主动模式☆ 被动模式 4、搭建FTP服务(重要)5、FTP的配置文件详解(重要) 二、FTP任务…

Git 设置代理

Git 传输分两种协议,SSH和 http(s),设置代理也需要分两种。 http(s) 代理 Command Line 使用 命令行 模式,可以在Powershell中使用以下命令设置代理: $env:http_proxy"http://127.0.0.1:7890" $env:https_proxy&quo…

12-数据结构-数组、矩阵、广义表

数组、矩阵、广义表 目录 数组、矩阵、广义表 一、数组 二.矩阵 三、广义表 一、数组 这一章节理解基本概念即可。数组要看清其实下标是多少,并且二维数组,存取数据,要先看清楚是按照行存还是按列存,按行则是正常一行一行的去读…

【AIGC 讯飞星火 | 百度AI|ChatGPT| 】智能对比

AI智能对比 🍸 前言🍺 概念类对比🍵 讯飞🍵 百度AI🍵 chatGPT 🍹 功能类对比☕ 讯飞☕ 百度AI☕ chatGPT 🥃 可输入字数对比🥤 百度AI🥤 讯飞🥤 chatGPT &…

认识Transformer:入门知识

视频链接: https://www.youtube.com/watch?vugWDIIOHtPA&listPLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4&index60 文章目录 Self-Attention layerMulti-head self-attentionPositional encodingSeq2Seq with AttentionTransformerUniversal Transformer Seq2Seq …

ansible入门

ansible入门 一.ansible 背景介绍 Ansible 是一个广受欢迎的 IT 自动化系统。可以用来处理配置管理、应用自动化部署、云资源配给、网络 自动化和多借点部署等任务。其也可以使得复杂的变更如带负载均衡的零停机滚动更新更加容易。Ansible.com 1.1 自动化运维概念 1.1.1 运维…

专业课只考2门,计算机学硕最低分290的江苏院校

南京工业大学 考研难度(☆) 内容:23考情概况(拟录取和复试分析)、专业目录、23复试详情、各专业考情分析。 正文1332字,预计阅读:3分钟。 2023考情概况 南京工业大学计算机相关各专业复试和…

超实用的批量管理工具 pssh 和 window 文件传输工具 pscp

文章目录 一、概述1)pssh2)pscp 二、pssh 工具安装三、pssh 命令的基本语法四、pscp 工具安装1)Windows 上安装2)Linux 系统上安装 五、 pscp 命令的基本语法1)从 windows 向 linux 传文件2)从 linux 传文件…

Golang协程,通道详解

进程、线程以及并行、并发 关于进程和线程 进程(Process)就是程序在操作系统中的一次执行过程,是系统进行资源分配和调度的基本单位,进程是一个动态概念,是程序在执行过程中分配和管理资源的基本单位,每一…

在APP中如何嵌入小游戏?

APP内嵌游戏之所以能火爆,主要是因为互联网对流量的追求是无止境的,之前高速增长的红利期后,获取新的流量成为各大厂商的挑战,小游戏的引入,就是这个目的,为已有的产品赋能,抢占用户注意力和使用…

leetcode 139. 单词拆分

2023.8.18 本题可以看作完全背包问题,字符串s为背包,字符串列表worddict中的字符串为物品。由于本题的物品集合是排列问题(即物品的排列顺序对结果有影响),所以遍历顺序为:先遍历背包再遍历物品。 接下来看代码: clas…

LVS-DR集群(一台LVS,一台CIP,两台web,一台NFS)的构建以及LVS-DR模式工作原理和特点

一.LVS-DR工作模式原理和特点 1.工作模式 2.模式特点 二.构建环境 1.五台关闭防火墙,关闭selinux,拥有固定IP,部署有http服务的虚拟机,LVS设备下载ipvsadm工具,NFS 设备需要下载rpcbind和nfs-utils 2.实现功能 3…

图数据库_Neo4j中文版_Centos7.9安装Neo4j社区版3.5.9_基于jdk1.8---Neo4j图数据库工作笔记0012

由于我们在国内使用啊,具体还是要用中文版滴,找了好久这个neo4j,原来还是有中文版的, https://we-yun.com/doc/neo4j-chs/ 中文版下载地址在这里: 所有版本都在这里了,需要哪个自己去下载就可以了,要注意下载以后,参考: https://we-yun.com/blog/prod-56.html 在这个位置下载…

YOLOv8改进后效果

数据集 自建铁路障碍数据集-包含路障,人等少数标签。其中百分之八十作为训练集,百分之二十作为测试集 第一次部署 版本:YOLOv5 训练50epoch后精度可达0.94 mAP可达0.95.此时未包含任何改进操作 第二次部署 版本:YOLOv8改进版本 首…

linux——mysql的高可用MHA

目录 一、概述 一、概念 二、组成 三、特点 四、工作原理 二、案例 三、构建MHA 一、基础环境 二、ssh免密登录 三、主从复制 master slave1 四、MHA安装 一、环境 二、安装node 三、安装manager 一、概述 一、概念 MHA(MasterHigh Availability&a…

最强自动化测试框架Playwright(37)-网络

介绍 Playwright 提供 API 来监控和修改浏览器网络流量,包括 HTTP 和 HTTPS。页面执行的任何请求,包括 XHR 和获取请求,都可以被跟踪、修改和处理。 模拟接口 查看我们的 API 模拟指南,了解有关如何 模拟 API 请求&#xff0c…

Sentinel规则持久化

首先 Sentinel 控制台通过 API 将规则推送至客户端并更新到内存中,接着注册的写数据源会将新的规则保存到本地的文件中。 示例代码: 1.编写处理类 //规则持久化 public class FilePersistence implements InitFunc {Value("spring.application:n…

java+springboot+mysql银行管理系统

项目介绍: 使用javaspringbootmysql开发的银行管理系统,系统包含超级管理员、管理员、客户角色,功能如下: 超级管理员:管理员管理;客户管理;卡号管理(存款、取款、转账&#xff09…

GRPC 学习记录

GRPC 安装 安装 grpcio、grpcio-tools、protobuf、 pip install grpcio -i https://pypi.tuna.tsinghua.edu.cn/simple pip install grpcio-tools -i https://pypi.tuna.tsinghua.edu.cn/simple pip install protobuf -i https://pypi.tuna.tsinghua.edu.cn/simple常用类型 p…