LeetCode450. 删除二叉搜索树中的节点

450. 删除二叉搜索树中的节点

文章目录

      • [450. 删除二叉搜索树中的节点](https://leetcode.cn/problems/delete-node-in-a-bst/)
        • 一、题目
        • 二、题解
          • 方法一:递归(一种麻烦的方法)
          • 方法二:优化后的递归


一、题目

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

  1. 首先找到需要删除的节点;
  2. 如果找到了,删除它。

示例 1:

img

输入:root = [5,3,6,2,4,null,7], key = 3
输出:[5,4,6,2,null,null,7]
解释:给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。
另一个正确答案是 [5,2,6,null,4,null,7]。

示例 2:

输入: root = [5,3,6,2,4,null,7], key = 0
输出: [5,3,6,2,4,null,7]
解释: 二叉树不包含值为 0 的节点

示例 3:

输入: root = [], key = 0
输出: []

提示:

  • 节点数的范围 [0, 104].
  • -105 <= Node.val <= 105
  • 节点值唯一
  • root 是合法的二叉搜索树
  • -105 <= key <= 105

进阶: 要求算法时间复杂度为 O(h),h 为树的高度。

二、题解

方法一:递归(一种麻烦的方法)

主要思路如下:

  1. findNode 函数:这个函数用于在给定的二叉搜索树中找到值等于 target 的节点。函数采用递归的方式,在树中搜索目标节点。如果当前节点为空,说明未找到目标节点,返回 nullptr。如果当前节点的值等于目标值,返回该节点。如果当前节点的值大于目标值,说明目标节点在左子树中,递归地搜索左子树。否则,目标节点在右子树中,递归地搜索右子树。

  2. deleteNode 函数:这个函数用于删除二叉搜索树中值为 key 的节点。首先,通过调用 findNode 函数找到待删除的节点 node,同时维护一个指向 node 的父节点 pre。然后根据删除情况进行不同的处理:

    • 如果 pre 为空,说明待删除节点是根节点。然后根据左右子树的情况进行调整,保留右子树并将左子树插入右子树中的最左叶子节点。
    • 如果 pre 非空,根据 pre 的位置判断 node 是其父节点的左子节点还是右子节点。然后根据左右子树的情况进行调整,同样保留右子树并将左子树插入右子树中的最左叶子节点。

最后,删除 node 节点并返回调整后的树。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode *pre = nullptr;TreeNode* findNode(TreeNode *root, int target){if(root == nullptr){return root;}if(root->val == target){return root;}pre = root;if(root->val > target){TreeNode *left = findNode(root->left, target);return left;}else{TreeNode *right = findNode(root->right, target);return right;}}TreeNode* deleteNode(TreeNode* root, int key) {TreeNode *node = findNode(root, key);if(node == nullptr) return root;if(pre == nullptr){if(node->left && node->right){TreeNode *temp = node->right;while(temp->left){temp = temp->left;}temp->left = node->left;return node->right;}else if(node->left){return node->left;}else if(node->right){return node->right;}else{return nullptr;}}if(pre && pre -> right == node){if(node->left && node->right){TreeNode *temp = node->right;while(temp->left){temp = temp->left;}temp->left = node->left;pre->right = node->right;}else if(node->left){pre->right = node->left;}else if(node->right){pre->right = node->right;}else{pre->right = nullptr;}}if(pre && pre->left == node){if(node->left && node->right){TreeNode *temp = node->right;while(temp->left){temp = temp->left;}temp->left = node->left;pre->left = node->right;}else if(node->left){pre->left = node->left;}else if(node->right){pre->left = node->right;}else{pre->left = nullptr;}}delete node;return root;}
};
方法二:优化后的递归

算法思路

  1. 递归搜索节点: 首先,我们从根节点开始递归地搜索目标节点(值为key的节点)。

    • 如果当前节点为空,表示没有找到目标节点,直接返回空指针(nullptr)。
    • 如果当前节点的值大于目标key,说明目标节点在左子树中,递归搜索左子树。
    • 如果当前节点的值小于目标key,说明目标节点在右子树中,递归搜索右子树。
    • 如果当前节点的值等于目标key,说明找到了目标节点,继续下一步。
  2. 处理删除操作: 一旦我们找到了目标节点,有几种情况需要处理:

    • 如果目标节点没有左子树,那么我们可以用其右子树来替代这个节点,然后删除这个节点。
    • 如果目标节点没有右子树,类似地,我们可以用其左子树来替代这个节点,然后删除这个节点。
    • 如果目标节点既有左子树又有右子树,我们可以找到其右子树中最小的节点(即右子树中的最左节点,即后继节点),将该节点的值复制到目标节点上,然后递归地在右子树中删除这个后继节点。
  3. 返回根节点: 最后,无论如何都要返回当前子树的根节点。

具体实现

class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {if (!root)return nullptr;if (root->val > key) {root->left = deleteNode(root->left, key); // 递归搜索左子树} else if (root->val < key) {root->right = deleteNode(root->right, key); // 递归搜索右子树} else {if (!root->left) { // 没有左子树,用右子树替代TreeNode* temp = root->right;delete root;return temp;} else if (!root->right) { // 没有右子树,用左子树替代TreeNode* temp = root->left;delete root;return temp;}TreeNode* temp = findMin(root->right); // 找到后继节点root->val = temp->val;root->right = deleteNode(root->right, temp->val); // 在右子树中删除后继节点}return root; // 返回根节点}private:TreeNode* findMin(TreeNode* node) {while (node->left)node = node->left;return node; // 找到最左节点,即后继节点}
};

算法分析

  • 在最坏情况下,我们需要遍历BST的高度h,即时间复杂度为O(h)。
  • 递归深度取决于树的高度,所以空间复杂度也是O(h)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96885.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

干翻Dubbo系列第十二篇:Dubbo协议介绍

文章目录 文章说明 一&#xff1a;Dubbo协议 1&#xff1a;Dubbo协议简介 2&#xff1a;Dubbo协议优点 3&#xff1a;Dubbo协议帧的组成 (一)&#xff1a;幻数 (二)&#xff1a;2Way (三)&#xff1a;event (四)&#xff1a;Serilization ID (五)&#xff1a;status …

linux:Temporary failure in name resolutionCouldn’t resolve host

所有域名无法正常解析。 ping www.baidu.com 等域名提示 Temporary failure in name resolution错误。 rootlocalhost:~# ping www.baidu.com ping: www.baidu.com: Temporary failure in name resolution rootlocalhost:~# 一、ubuntu/debian&#xff08;emporary failure i…

Docker容器:docker的资源控制及docker数据管理

文章目录 一.docker的资源控制1.CPU 资源控制1.1 资源控制工具1.2 cgroups有四大功能1.3 设置CPU使用率上限1.4 进行CPU压力测试1.5 设置50%的比例分配CPU使用时间上限1.6 设置CPU资源占用比&#xff08;设置多个容器时才有效&#xff09;1.6.1 两个容器测试cpu1.6.2 设置容器绑…

中间件(二)dubbo负载均衡介绍

一、负载均衡概述 支持轮询、随机、一致性hash和最小活跃数等。 1、轮询 ① sequences&#xff1a;内部的序列计数器 ② 服务器接口方法权重一样&#xff1a;&#xff08;sequences1&#xff09;%服务器的数量&#xff08;决定调用&#xff09;哪个服务器的服务。 ③ 服务器…

预警:传统的QA岗位将被DevOps淘汰

导读在大多数机构或公司里&#xff0c;软件开发过程主要遵循一个或多个开发模型&#xff0c;例如瀑布模型或敏捷模型。在瀑布模型中&#xff0c;测试活动一般都在后期进行。软件开发完成后&#xff0c;缺陷被QA团队找出&#xff0c;然后再被修复。后两个活动不断循环和重复&…

创建KVM虚拟机

文章目录 安装KVM虚拟机环境准备硬件虚拟化添加一块磁盘分区并格式化创建挂载目录并挂载分区上传镜像&#xff1a; virt-manager图形化安装下载virt-manager开始安装 virsh-install命令行安装安装组件使用virt-install安装 virsh管理虚拟机基本命令拓展命令 安装KVM虚拟机 环境…

【福建事业单位-公基-法】02国家基本制度、公民的基本权利和义务 国家机构

【福建事业单位-公基-法】02国家基本制度 一、国家基本制度1.1 自然资源归属1.2 选举制度1.3 民族区域自治制度总结 二、公民的基本权利和义务1.1 权力1.2 义务总结 三、国家机构3.1 全国人民代表大会3.2全国人民代表大会常务委员会3.3 国家主席3.4国务院3.5监察委3.6 人民法院…

设计模式

本文主要介绍设计模式的主要设计原则和常用设计模式。 一、UML画图 1.类图 2.时序图 二、设计模式原则 1.单一职责原则 就是一个方法、一个类只做一件事&#xff1b; 2.开闭原则 就是软件的设计应该对拓展开放&#xff0c;对修改关闭&#xff0c;这在java中体现最明显的就…

Kubernetes二进制部署方案

目录 一、环境准备 2.1、主机配置 2.2、安装 Docker 2.3、生成通信加密证书 2.3.1、生成 CA 证书&#xff08;所有主机操作&#xff09; 2.3.2、生成 Server 证书&#xff08;所有主机&#xff09; 2.3.3、生成 admin 证书(所有主机) 2.3.4、生成 proxy 证书 三、部署 …

Three.js程序化3D城市建模【OpenStreetMap】

对于我在 Howest 的研究项目&#xff0c;我决定构建一个 3D 版本的 Lucas Bebber 的“交互式讲故事的动画地图路径”项目。 我将使用 OSM 中的矢量轮廓来挤出建筑物的形状并将它们添加到 3js 场景中&#xff0c;随后我将对其进行动画处理 推荐&#xff1a;用 NSDT编辑器 快速搭…

VR/AR眼镜方案,MTK联发科平台智能眼镜安卓主板设计方案

随着人工智能在不同领域的逐渐深入&#xff0c;人们对一款产品的需求不再局限于某种单一的功能或单一场景&#xff0c;尤其是在工业医疗等专业领域&#xff0c;加快数字化转型才能实现产业的升级。 AR智能眼镜&#xff0c;是一个可以让现场作业更智能的综合管控设备。采用移动…

jvm内存溢出排查(使用idea自带的内存泄漏分析工具)

文章目录 1.确保生成内存溢出文件2.使用idea自带的内存泄漏分析工具3.具体实验一下 1.确保生成内存溢出文件 想分析堆内存溢出&#xff0c;一定在运行jar包时就写上参数-XX:HeapDumpOnOutOfMemoryError&#xff0c;可以看我之前关于如何运行jar包的文章。若你没有写。可以写上…

SpringBoot 学习(03): 弱语言的注解和SpringBoot注解的异同

弱语言代表&#xff1a;Hyperf&#xff0c;一个基于 PHP Swoole 扩展的常驻内存框架 注解概念的举例说明&#xff1b; 说白了就是&#xff0c;你当领导&#xff0c;破烂事让秘书帮你去安排&#xff0c;你只需要批注一下&#xff0c;例如下周要举办一场活动&#xff0c;秘书将方…

【VBA_选择区域的关键词更改颜色】

Private Sub CommandButtonl_Click() Cells.Font.ColorIndex 1 End Sub Sub Worksheet_SelectionChange(ByVal Target As Range) Dim rng As Range, i As Integer Dim T As String Dim C As Integer For Each rng In Selection T "河北" C 3 i 1 Do While InStr(…

SpringBoot + Vue 前后端分离项目 微人事(九)

职位管理后端接口设计 在controller包里面新建system包&#xff0c;再在system包里面新建basic包&#xff0c;再在basic包里面创建PositionController类&#xff0c;在定义PositionController类的接口的时候&#xff0c;一定要与数据库的menu中的url地址到一致&#xff0c;不然…

javaScript:模板字符串让你忘记字符串拼接

目录 一.前言 二.模板字符串的使用 1.介绍 2.模板字符串 支持换行 模板字符串更适合元素写入 innerHTML模板字符串写法 3.模板字符串中&#xff0c;可以运行表达式 4.模板字符串中可以运行函数 三.总结 语法&#xff1a; 多行字符串&#xff1a; 变量插值&#xff1a; …

SpringBoot统⼀功能处理

前言&#x1f36d; ❤️❤️❤️SSM专栏更新中&#xff0c;各位大佬觉得写得不错&#xff0c;支持一下&#xff0c;感谢了&#xff01;❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 本章是讲Spring Boot 统⼀功能处理模块&#xff0c;也是 AOP 的实战环节&…

学习 Linux 系统路线图

在计算机科学领域&#xff0c;Linux 操作系统以其稳定性、灵活性和卓越性能而受到广泛欢迎。要真正掌握 Linux 系统&#xff0c;我们需要深入了解其关键组成部分&#xff0c;包括系统、内存、进程、网络和存储等模块。让我们深入探索这些模块&#xff0c;以建立起对 Linux 系统…

归并排序:从二路到多路

前言 我们所熟知的快速排序和归并排序都是非常优秀的排序算法。 但是快速排序和归并排序的一个区别就是&#xff1a;快速排序是一种内部排序&#xff0c;而归并排序是一种外部排序。 简单理解归并排序&#xff1a;递归地拆分&#xff0c;回溯过程中&#xff0c;将排序结果进…

深度学习在MRI运动校正中的应用综述

运动是MRI中的主要挑战之一。由于MR信号是在频率空间中获取的&#xff0c;因此除了其他MR成像伪影之外&#xff0c;成像对象的任何运动都会导致重建图像中产生伪影。深度学习被提出用于重建过程的几个阶段的运动校正。广泛的MR采集序列、感兴趣的解剖结构和病理学以及运动模式&…