OpenCV基础知识(6)— 滤波器

前言:Hello大家好,我是小哥谈。在尽量保留原图像信息的情况下,去除图像内噪声、降低细节层次信息等一系列过程,被叫做图像的平滑处理(或者叫图像的模糊处理)。实现平滑处理最常用的工具就是滤波器。通过调节滤波器的参数,可以控制图像的平滑程度。OpenCV提供了种类丰富的滤波器,每种滤波器使用的算法均不相同,但都能对图像中的像素值进行微调,让图像呈现平滑效果。本节将介绍均值滤波器、中值滤波器、高斯滤波器和双边滤波器的使用方法。🌈

前期回顾:

              史上最全OpenCV常用方法及使用说明汇总,建议收藏!

              OpenCV基础知识(1)— OpenCV概述

              OpenCV基础知识(2)— 图像处理的基本操作

              OpenCV基础知识(3)— 图像数字化基础(像素、色彩空间) 

              OpenCV基础知识(4)— 绘制图形

              OpenCV基础知识(5)— 几何变换 

              目录

🚀1.均值滤波器

🚀2.中值滤波器

🚀3.高斯滤波器

🚀4.双边滤波器

🚀5.总结

🚀1.均值滤波器

图像中可能会出现这样一种像素:该像素与周围像素的差别非常大,导致从视觉上就能看出该像素无法与周围像素组成可识别的图像信息,降低了整个图像的质量。这种“格格不入”的像素就被称为图像的噪声。如果图像中的噪声都是随机的纯黑像素或者纯白像素,这样的噪声也被称为“椒盐噪声”或“盐噪声”。

以一个像素为核心,核心周围像素可以组成一个n行n列(简称 n×n)的矩阵,这样的矩阵结构在滤波操作中被称为“滤波核”。矩阵的行列数决定了滤波核的大小,例如下图所示,滤波核大小为3×3,包含9个像素。🌴

均值滤波器(也被称为低通滤波器)可以把图像中的每一个像素都当做滤波核的核心,然后计算出核内所有像素的平均值,最后让核心像素值等于这个平均值。

OpenCV将均值滤波器封装成了blur()方法,其语法如下:

dst = cv2.blur(src,ksize,anchor,borderType)

参数说明:

src:被处理的图像

ksize:滤波核大小,其格式为(高度,宽度),建议使用如(3,3)、(5,5)等宽高相等的奇数边长。滤波核越大,处理之后的图像就越模糊。

anchor:可选参数,滤波核的锚点,建议采用默认值,方法可以自动计算锚点。

boderType:可选参数,边界样式,建议采用默认值。

返回值说明:

dst:经过均值滤波处理之后的图像

案例:

使用大小为9×9的滤波核对图像进行均值滤波操作,代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
dst1 = cv2.blur(img, (9, 9))  # 使用大小为9*9的滤波核进行均值滤波
cv2.imshow("img", img)  # 显示原图
cv2.imshow("9*9", dst1)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

滤波核越大,处理之后的图像就越模糊。 


🚀2.中值滤波器

中值滤波器的原理与均值滤波器非常相似,唯一的不同就是不会计算像素的平均值,而是将所有像素值进行排序,把最中间的像素值取出,赋值给核心像素。

OpenCV将中值滤波器封装成了medianBlur()方法,其语法如下:

dst = cv2.medianBlur(src,ksize)

参数说明:

src:被处理的图像

ksize:滤波核的边长,必须是大于1的奇数,例如3、5、7等。方法会根据此边长自动创建一个正方形的滤波核。

返回值说明:

dst:经过中值滤波处理之后的图像

案例:

使用边长为9的滤波核对图像进行中值滤波操作,代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
dst1 = cv2.medianBlur(img, 9)  # 使用宽度为9的滤波核进行中值滤波
cv2.imshow("img", img)  # 显示原图
cv2.imshow("9", dst1)  # 显示滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

1.中值滤波器语法中的ksize参数是边长,而其它滤波器的ksize参数通常是(高,宽) 。

2.滤波核的边长越长,处理之后的图像就越模糊。

3.中值滤波处理的图像会比均值滤波处理的图像丢失更多细节。


🚀3.高斯滤波器

高斯滤波也被称为高斯模糊、高斯平滑,是目前应用最广泛的平滑处理算法。高斯滤波可以很好地在降低图片噪声、细节层次的同时保留更多的图像信息,经过处理的图像会呈现“磨砂玻璃”的滤镜效果。

OpenCV将高斯滤波器封装成了GaussianBlur()方法,其语法如下:

dst = cv2.GaussianBlur(src,ksize,sihmaX,sigmaY,borderType)

参数说明:

src:被处理的图像

ksize:滤波核的大小,宽、高必须是奇数,例如(3,3)、(5,5)等。

sigmaX:卷积核水平方向的标准差

sigmaY:卷积核垂直方向的标准差。修改 sigmaX 或 sigmaY 的值都可以改变卷积核中的权重比例。如果不知道如何设计这两个参数值,就直接把这两个参数的值写成0,方法就会根据滤波核的大小自动计算出合适的权重比例。

boderType:可选参数,边界样式,建议使用默认值。

返回值说明:

dst:经过高斯滤波处理之后的图像

案例:

使用9×9的滤波核对图像进行高斯滤波操作,水平方向和垂直方向的标准差参数值全部为0,代码如下:

import cv2
img = cv2.imread("amygdalus triloba.jpg")  # 读取原图
dst1 = cv2.GaussianBlur(img, (9, 9), 0, 0)  # 使用大小为9*9的滤波核进行高斯滤波
cv2.imshow("img", img)  # 显示原图
cv2.imshow("9", dst1)  # 显示滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

和均值滤波、中值滤波处理的图像相比,高斯滤波处理的图像更加平滑,保留的图像信息更多,更容易辨认。 


🚀4.双边滤波器

不管是均值滤波、中值滤波还是高斯滤波,都会使整幅图像变得平滑,图像中的边界会变得模糊不清。双边滤波是一种在平滑处理过程中可以有效保护边界信息的滤波操作

双边滤波器会自动判断滤波核处于“平坦”区域还是“边缘”区域:如果滤波核处于“平坦”区域,则会使用类似高斯滤波的算法进行滤波;如果滤波核处于“边缘”区域,则加大“边缘”像素的权重,尽可能让这些像素值保持不变。

OpenCV将双边滤波器封装成了bilateralFilter()方法,其语法如下:

dst = cv2.bilateralFilter(src,d,sigmaColor,sigmaSpace,borderType)

参数说明:

src:被处理的图像

d:以当前像素为中心的整个滤波区域的直径。如果是d<0,则自动根据 sigmaSpace 参数计算得到。该值与保留的边缘信息数量成正比,与方法运行效率成反比。

sigmaColor:参与计算的颜色范围,这个值是像素颜色值与周围颜色值的最大差值,只有颜色值之差小于这个值时,周围的像素才会进行滤波计算。值为255时,表示所有颜色都参与计算。

sigmaSpace:坐标空间的σ(sigma)值,该值越大,参与计算的像素数量就越多。

borderType:可选参数,边界样式,建议默认。

返回值说明:

dst:经过双边滤波处理之后的图像

案例:

使用大小为(15,15)的滤波核对图像进行高斯滤波处理,同样使用15作为范围直径对图像进行双边滤波处理,观察两种滤波处理之后的图像边缘有什么差别,代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
dst1 = cv2.GaussianBlur(img, (15, 15), 0, 0)  # 使用大小为15*15的滤波核进行高斯滤波
# 双边滤波,选取范围直径为15,颜色差为120
dst2 = cv2.bilateralFilter(img, 15, 120, 100)
cv2.imshow("img", img)  # 显示原图
cv2.imshow("Gauss", dst1)  # 显示高斯滤波效果
cv2.imshow("bilateral", dst2)  # 显示双边滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

由上面三张图对比可得,高斯滤波模糊了整个画面,但双边滤波保留了较清晰的边缘信息。


🚀5.总结

均值滤波器:中央像素取平均值,效果像马赛克。

中值滤波器:中央像素取排序后的中间值,效果像水彩画。

高斯滤波器:按照卷积核权重计算中央像素值,毛玻璃效果。

双边滤波器:保留边缘信息,边缘清晰。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97466.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3588平台开发系列讲解(AI 篇)RKNN C API 详细说明

文章目录 一、API 硬件平台支持说明二、API 函数介绍2.1、rknn_init2.2、rknn_destroy2.3、rknn_query2.4、rknn_inputs_set2.5、rknn_run2.6、rknn_outputs_get2.7、rknn_outputs_release沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要讲解 RKNN C API 详细…

浅析基于视频汇聚与AI智能分析的新零售方案设计

一、行业背景 近年来,随着新零售概念的提出,国内外各大企业纷纷布局智慧零售领域。从无人便利店、智能售货机,到线上线下融合的电商平台,再到通过大数据分析实现精准推送的个性化营销,智慧零售的触角已经深入各个零售…

[Mac软件]MacCleaner 3 PRO 3.2.1应用程序清理和卸载

应用介绍 MacCleaner PRO是一个应用程序包,将帮助您清除磁盘空间并加快Mac的速度! MacCleaner PRO - 让您的Mac始终快速、干净和有条理。 App Cleaner & Uninstaller PRO - 完全删除未使用的应用程序并管理Mac扩展。 磁盘空间分析仪PRO-分析磁盘空…

CMC、mAP解析:图像检索领域评价指标

1. CMC: Cumulative Matching Characteristics 累计匹配特征 CMC是一种计算 top-n 的评价指标,主要用来评估闭集中rank-n的正确率。 下面举例说明: 在双模态特征匹配中。底库 Gallery 中有10条数据(label分别为1,2&am…

【数据结构OJ题】有效的括号

原题链接:https://leetcode.cn/problems/valid-parentheses/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 这道题目主要考查了栈的特性: 题目的意思主要是要做到3点匹配:类型、顺序、数量。 题目给的例子是比较…

Python web实战之Django 的跨站点请求伪造(CSRF)保护详解

关键词:Python、Web、Django、跨站请求伪造、CSRF 大家好,今天我将分享web关于安全的话题:Django 的跨站点请求伪造(CSRF)保护,介绍 CSRF 的概念、原理和保护方法. 1. CSRF 是什么? CSRF&#…

VBA技术资料MF43:VBA_Excel中自动填充

【分享成果,随喜正能量】以时寝息,当愿众生,身得安隐,心无动乱。愿我们都能,梦见幸福!在踉跄中前进,在跌倒后跃进,逐渐强大.。 我给VBA的定义:VBA是个人小型自动化处理的…

Shell脚本基础( 四: sed编辑器)

目录 1 简介 1.1 sed编辑器的工作流程 2 sed 2.1 基本用法 2.2 sed基本格式 2.2.1 sed支持正则表达式 2.2.2 匹配正则表达式 2.2.3 奇数偶数表示 2.2.4 -d选项删除 2.2.5 -i修改文件内容 2.2.6 -a 追加 2.3 搜索替代 2.4 变量 1 简介 sed是一种流编辑器,…

详解junit

目录 1.概述 2.断言 3.常用注解 3.1.Test 3.2.Before 3.3.After 3.4.BeforeClass 3.5.AfterClass 4.异常测试 5.超时测试 6.参数化测试 1.概述 什么是单元测试: 单元测试,是针对最小的功能单元编写测试代码,在JAVA中最小的功能单…

【前端面试】中大文件上传/下载:中等文件代理服务器放行+大文件切片传输+并发请求+localstorage实现断点续传

目录 中等文件代理服务器放行:10MB为单位 proxy nginx 大文件切片:100MB为单位 断点:存储切片hash 前端方案A localstorage 后端方案B 服务端 上传 前端 后端 下载 前端 后端 多个大文件传输:spark-md5 哈希碰撞…

C语言案例 判断是否为回文数-06.1

题目:随机输入一个5位数,判断它是不是回文数 步骤一:定义程序的目标 编写C程序,随机输入一个5位数,判断它是不是回文数 步骤二:程序设计 原理:即12321是回文数,个位与万位相同&#…

ElasticSearch 数据聚合、自动补全(自定义分词器)、数据同步

文章目录 数据聚合一、聚合的种类二、DSL实现聚合1、Bucket(桶)聚合2、Metrics(度量)聚合 三、RestAPI实现聚合 自动补全一、拼音分词器二、自定义分词器三、自动补全查询四、实现搜索款自动补全(例酒店信息&#xff0…

中大型企业选择CRM系统必备五大功能是什么?

中大型企业的特点是客户数量多,业务复杂,需求多样,对CRM系统的功能和作用有着更高的要求。下面我们从五个方面来为您介绍一下,中大型企业CRM系统的功能及作用。 客户信息管理: CRM系统可以帮助企业收集、存储、分析客…

【Azure API 管理】APIM如何实现对部分固定IP进行访问次数限制呢?如60秒10次请求

问题描述 使用Azure API Management, 想对一些固定的IP地址进行访问次数的限制,如被限制的IP地址一分钟可以访问10次,而不被限制的IP地址则可以无限访问? ChatGPT 解答 最近ChatGPT爆火,所以也把这个问题让ChatGPT来解答&#x…

Linux/Ubuntu 的日常更新,如何操作?

我安装的是Ubuntu 20.04.6 LTS的Windows上Linux子系统版本,启动完成后显示: Welcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.15.90.4-microsoft-standard-WSL2 x86_64) * Documentation: https://help.ubuntu.com * Management: https://landscape.c…

BOXTRADE-天启量化分析平台 主要功能介绍

BOXTRADE-天启量化分析平台 主要功能介绍 potato 数学 web 缘起 月晕而风,础润而雨 BOXTRADE-天启量化 欢迎来到天启量化!这是一个专注于量化分析的网站。我们致力于为用户提供市场行情技术指标和量化策略分析方面的优质内容和资源。 我们的使命是 做…

Python学习:迭代器与生成器的深入解析

函数在Python中扮演着重要角色,不仅可以封装代码逻辑,还能通过迭代器和生成器这两种强大的技术,实现更高效的数据处理和遍历。本篇博客将深入探讨Python函数的迭代器和生成器,结合实际案例为你揭示它们的神奇,以及如何…

【GaussDB】 SQL 篇

建表语句 表的分类 普通的建表语句 复制表内容 只复制表结构 create table 新表名(like 源表名 including all); 如果希望注释被复制的话要指定including comments 复制索引、主键约束和唯一约束,那么需要指定including indexes including constraints &#xf…

【Elasticsearch】spring-boot-starter-data-elasticsearch的使用以及Elasticsearch集群的连接

更多有关博主写的往期Elasticsearch文章 标题地址【ElasticSearch 集群】Linux安装ElasticSearch集群(图文解说详细版)https://masiyi.blog.csdn.net/article/details/131109454基于SpringBootElasticSearch 的Java底层框架的实现https://masiyi.blog.c…

Android音视频剪辑器自定义View实战!

Android音视频剪辑器自定义View实战! - 掘金 /*** Created by zhouxuming on 2023/3/30** descr 音视频剪辑器*/ public class AudioViewEditor extends View {//进度文本显示格式-数字格式public static final int HINT_FORMAT_NUMBER 0;//进度文本显示格式-时间…