【Linux】进程信号篇Ⅰ:信号的产生(signal、kill、raise、abort、alarm)、信号的保存(core dump)

文章目录

  • 一、 signal 函数:用户自定义捕捉信号
  • 二、信号的产生
    • 1. 通过中断按键产生信号
    • 2. 调用系统函数向进程发信号
      • 2.1 kill 函数:给任意进程发送任意信号
      • 2.2 raise 函数:给调用进程发送任意信号
      • 2.3 abort 函数:给调用进程发送 6 号信号
    • 3. 软件条件产生信号
      • alarm 函数:闹钟时间后,发送 14(SIGALRM )号信号
    • 4. 硬件异常产生信号
      • 4.1 除0:8) SIGFPE
      • 4.2 野指针:11) SIGSEGV
  • 三、信号保存的细节
    • 1. core 和 term
    • 2. waitpid 中,status 第八位的 core dump 标志位
  • 🔗 接下篇


kill -l 可以查看所有信号:

在这里插入图片描述
其中,前面的数字就是信号,后面的大写英文就是信号名称,实际就是宏。

我们需要关注的是 1~31 号普通信号,关注他们有没有产生(可以用 0 或者 1 表示)。

所以,进程的 pcb 中,需要对产生的信号先用 位图 保存起来,再按照一定的顺序去处理他们。

我们所谓发送信号,本质其实就是写入信号,直接修改特定进程的信号位图中的特定比特位(0 / 1)。位图中,比特位的位置,是信号的编号;比特位的内容表示,是否收到该信号。

无论后面有多少种信号产生的方式,最终都必须要让 OS 来完成最后发送 / 写入的过程。

man 7 signal:查看所有信号详细信息
在这里插入图片描述


一、 signal 函数:用户自定义捕捉信号

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

参数 signum:

  • 信号编号


参数 handler:

  • 用户自定义处理动作,在 signum 信号发生时触发。

🌰使用举例:

// 自定义方法
// signo:特定信号被发送给当前进程的时候,执行handler方法的时候,要自动填充对应的信号给handler方法
// 我们甚至可以给所有的信号设置同一个处理函数
void handler(int signo)
{std::cout << "get a singal: " << signo << std::endl;// exit(2);
}int main()
{// signal(SIGINT, handler);// signal(SIGQUIT, handler);signal(2, handler);	// 2:ctrl+csignal(3, handler);	// 3:ctrl+\while(true){std::cout << "我是一个进程,我正在运行 ..., pid: " << getpid() << std::endl;sleep(1);}return 0;
}
1. 2号信号,进程的默认处理动作是终止进程
2. signal 可以进行对指定的信号设定自定义处理动作
3. signal(2, handler)调用完这个函数的时候,handler方法没有被调用,只是更改了2号信号的处理动作。
4. 那么handler方法在当2号信号产生的时候才会被调用
5. 默认我们对2号信号的处理动作:终止进程,我们用signal(2, handler), 我们在执行用户动作的自定义捕捉!不是每个信号我们都可以自定义捕捉的!!比如 9 就不行。是 OS 规定的

二、信号的产生

1. 通过中断按键产生信号

比如用户按下 ctrl+c,键盘输入产生一个 硬件中断,用电信号将中断号写入寄存器,系统再根据中断号去中断向量表中查找,然后 OS 再从键盘中去读取数据(看是键盘哪些位置被摁下)。被 OS 获取后,解释成信号,发送给目标前台进程。

2. 调用系统函数向进程发信号

2.1 kill 函数:给任意进程发送任意信号

头文件

#include <signal.h>

int kill(pid_t pid, int sig);

参数 pid:

  • 进程pid

参数 sig:

  • 信号

2.2 raise 函数:给调用进程发送任意信号

头文件

#include <signal.h>

int raise(int sig);

参数 sig:

  • 信号

2.3 abort 函数:给调用进程发送 6 号信号

头文件

#include <stdlib.h>

void abort(void);

进程收到 6 号信号就会终止,即使可以被用户捕捉到,也会完成终止。

3. 软件条件产生信号

(SIGPIPE也是一个由软件条件产生的信号

alarm 函数:闹钟时间后,发送 14(SIGALRM )号信号

默认动作是终止(Term)当前进程
头文件

#include <unistd.h>

unsigned alarm(unsigned seconds);

参数 seconds:

  • 时间


返回值:

  • 0,或者是以前设定的闹钟时间还余下的秒数。(比如第一次提前结束,在次重新设定时,就会返回之前剩余的时间)

alarm 函数是一次性的,可以利用捕捉器,进行 自取 操作,达到不断设置闹钟的作用。

🌰使用举例:

void myhandler(int signo)
{std::cout << "get a signal: " << signo << " count: " << count << std::endl;alarm(1);// exit(0);
}int main(int argc, char *argv[])
{std::cout << "pid: " << getpid() << std::endl;signal(SIGALRM, myhandler);alarm(1); //一次性的while(true){sleep(1);}
}

alarm 也是有内核数据结构的,OS 管理这些内核数据结构,每隔一段时间就会去比如说管理 alarm 的最小堆中,当堆顶 timestamp >= 系统当前时间 时,就会给这个对应的进程 pid 发送 SIGALRM 信号,并把这个闹钟从堆中拿走。

struct alarm
{int timestamp; // curr + 设置的seconds// ...进程 pid ...等等
};

4. 硬件异常产生信号

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。

4.1 除0:8) SIGFPE

SignalValueActioncomment
SIGFPE8CoreFloating point exception

例如当前进程执行了除 0 的指令,CPU的运算单元会产生异常,内核将这个异常解释为 SIGFPE 信号,发送给进程。

状态寄存器:用比特位表示状态,其中有一位,就是反映本次计算是否有溢出问题。

出现除 0 后,溢出标志位被置 1,os 发现后立即将 相应进程 pcb 中发送 8号 信号。

4.2 野指针:11) SIGSEGV

SignalValueActioncomment
SIGSEGV11CoreInvalid memory reference

再比如当前进程访问了非法内存地址,MMU 会产生异常,内核将这个异常解释为 SIGSEGV 信号发送给进程。

虚拟地址 通过页表 转换访问到物理内存,这个过程其实是软硬件结合的方式完成的。这个页表的 KV 转换过程就是由硬件 MMU 完成的。

MMU:内存管理单元,被集成在 CPU 内,转换时,只需要把虚拟地址导入到 MMU 这个硬件中,用这个硬件转。

🌰举例:

// 一个野指针问题
int *p = nullptr;
p* = 100;

分析上述代码,当我们赋值给指针为 nullptr 时,p 里面放的是 0 或者 nullptr,*p 代表的就是虚拟地址空间中的 0 号地址,我们想将 100 写入 0 号地址,但这个地址我们没有申请过,他也不允许我们访问,所以造成了野指针 / 悬垂指针问题。

其实,*p = 100;第一步并不是写入,而是首先进行虚拟地址到物理内存的转换。

  • 没有映射:MMU 硬件报错
  • 有映射,但是没有权限:MMU 直接报错
  • OS 接收到报错后,传递给 CPU 中的一个寄存器,找到相应进程的 pcb 对其发送 11号 信号。

三、信号保存的细节

1. core 和 term

查看信号的 Action 栏有 core 和 term 两种。

他们有什么不同呢?

在这里插入图片描述

  • term 终止的就是终止,没有多余的动作。

  • core 终止,会先进行核心转储,再进行终止。

进程在异常的时候,OS 可以将该核心代码部分进行 核心转储,将内存中进程的相关数据,全部 dump 到磁盘中。核心转储的目的是,方便异常后进行调试。

一般核心转储文件在云服务器上确实看不到,而是云服务器默认是关闭这个功能的!ulimit -a 可以查到 core_file_size 大小是0,即关闭的,按照提示 ulimit -c [数值] 设置大小,即可打开核心转储功能,数值设为 0 就是关闭。

当程序异常时,我们不知道哪里出了问题。有如下解决方法,称作 事后调试

  • -g 生成可执行程序,使用 gdb 命令打开调试模式

  • 命令行中输入:core-file core.xxxx (xxxx 为相应的核心转储生成文件),就会出现报错原因的详细信息,和报错位置

既然核心转储那么方便,为什么云服务器要关闭这个功能呢?

Linux环境根据使用目的可以分为:开发环境、测试环境、生产环境
云服务器属于生产环境,生产环境是默认关闭核心转储的!按照 CPU 的运行速度,错误的代码,在短时间内可以造成大量的 core. 文件,磁盘写满甚至系统崩溃都是有可能的,所以生产环境下,一般都是将这个功能关闭的。

2. waitpid 中,status 第八位的 core dump 标志位

在这里插入图片描述

这里的 core dump 标志位,就是用来记录,是否有 core dump 出现的。



🔗 接下篇

👉🔗进程信号篇Ⅱ:信号的阻塞及保存(sigset_t, sigprocmask, sigpending)、信号的处理、信号的捕捉(sigaction)

👉🔗进程信号篇Ⅲ:可重入函数、volatile关键字、SIGCHLD信号


🥰如果本文对你有些帮助,请给个赞或收藏,你的支持是对作者大大莫大的鼓励!!(✿◡‿◡) 欢迎评论留言~~



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98505.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习深度学习——NLP实战(情感分析模型——数据集)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——BERT&#xff08;来自transformer的双向编码器表示&#xff09; &#x1f4da;订阅专栏&#xff1a;机器…

Kubernetes 安全机制 认证 授权 准入控制

客户端应用若想发送请求到 apiserver 操作管理K8S资源对象&#xff0c;需要先通过三关安全验证 认证&#xff08;Authentication&#xff09;鉴权&#xff08;Authorization&#xff09;准入控制&#xff08;Admission Control&#xff09; Kubernetes 作为一个分布式集群的管理…

Flink的Standalone部署实战

在Flink是通用的框架&#xff0c;以混合和匹配的方式支持部署不同场景&#xff0c;而Standalone单机部署方便快速部署&#xff0c;记录本地部署过程&#xff0c;方便备查。 环境要求 1&#xff09;JDK1.8及以上 2&#xff09;flink-1.14.3 3&#xff09;CentOS7 Flink相关信…

ELK日志监控系统搭建docker版

目录 日志来源elk介绍elasticsearch介绍logstash介绍kibana介绍 部署elasticsearch拉取镜像&#xff1a;docker pull elasticsearch:7.17.9修改配置⽂件&#xff1a;/usr/share/elasticsearch/config/elasticsearch.yml启动容器设置密码&#xff08;123456&#xff09;忘记密码…

opencv-进阶05 手写数字识别原理及示例

前面我们仅仅取了两个特征维度进行说明。在实际应用中&#xff0c;可能存在着更多特征维度需要计算。 下面以手写数字识别为例进行简单的介绍。 假设我们要让程序识别图 20-2 中上方的数字&#xff08;当然&#xff0c;你一眼就知道是“8”&#xff0c;但是现在要让计算机识别…

【JUC系列-01】深入理解JMM内存模型的底层实现原理

一&#xff0c;深入理解JMM内存模型 1&#xff0c;什么是可见性 在谈jmm的内存模型之前&#xff0c;先了解一下并发并发编程的三大特性&#xff0c;分别是&#xff1a;可见性&#xff0c;原子性&#xff0c;有序性。可见性指的就是当一个线程修改某个变量的值之后&#xff0c…

自动化测试用例设计实例

在编写用例之间&#xff0c;笔者再次强调几点编写自动化测试用例的原则&#xff1a; 1、一个脚本是一个完整的场景&#xff0c;从用户登陆操作到用户退出系统关闭浏览器。 2、一个脚本脚本只验证一个功能点&#xff0c;不要试图用户登陆系统后把所有的功能都进行验证再退出系统…

智慧水利利用4G物联网技术实现远程监测、控制、管理

智慧水利工业路由器是集合数据采集、实时监控、远程管理的4G物联网通讯设备&#xff0c;能够让传统水利系统实现智能化的实时监控和远程管理。工业路由器利用4G无线网络技术&#xff0c;能够实时传输数据和终端信息&#xff0c;为水利系统的运维提供有效的支持。 智慧水利系统是…

湘潭大学 湘大 XTU OJ 1055 整数分类 题解(非常详细)

链接 整数分类 题目 Description 按照下面方法对整数x进行分类&#xff1a;如果x是一个个位数&#xff0c;则x属于x类&#xff1b;否则将x的各位上的数码累加&#xff0c;得到一个新的x&#xff0c;依次迭代&#xff0c;可以得到x的所属类。比如说24&#xff0c;246&#…

手写模拟SpringBoot核心流程(二):实现Tomcat和Jetty的切换

实现Tomcat和Jetty的切换 前言 上一篇文章我们聊到&#xff0c;SpringBoot中内置了web服务器&#xff0c;包括Tomcat、Jetty&#xff0c;并且实现了SpringBoot启动Tomcat的流程。 那么SpringBoot怎样自动切换成Jetty服务器呢&#xff1f; 接下来我们继续学习如何实现Tomcat…

⛳ TCP 协议面试题

目录 ⛳ TCP 协议面试题&#x1f43e; 一、为什么关闭连接的需要四次挥⼿&#xff0c;⽽建⽴连接却只要三次握⼿呢&#xff1f;&#x1f3ed; 二、为什么连接建⽴的时候是三次握⼿&#xff0c;可以改成两次握⼿吗&#xff1f;&#x1f463; 三、为什么主动断开⽅在TIME-WAIT状态…

服务器感染了.360勒索病毒,如何确保数据文件完整恢复?

引言&#xff1a; 随着科技的不断进步&#xff0c;互联网的普及以及数字化生活的发展&#xff0c;网络安全问题也逐渐成为一个全球性的难题。其中&#xff0c;勒索病毒作为一种危害性极高的恶意软件&#xff0c;在近年来频频袭扰用户。本文91数据恢复将重点介绍 360 勒索病毒&a…

Git分布式版本控制系统

目录 2、安装git 2.1 初始环境 2.2 Yum安装Git 2.3 编译安装 2.4 初次运行 Git 前的配置 2.5 初始化及获取 Git 仓库 2.6 Git命令常规操作 2.6.2 添加新文件 2.6.3 删除git内的文件 2.6.4 重命名暂存区数据 2.6.5 查看历史记录 2.6.6 还原历史数据 2.6.7 还原未来…

[机器学习]特征工程:主成分分析

目录 主成分分析 1、简介 2、帮助理解 3、API调用 4、案例 本文介绍主成分分析的概述以及python如何实现算法&#xff0c;关于主成分分析算法数学原理讲解的文章&#xff0c;请看这一篇&#xff1a; 探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客https://blog.csdn.…

WebRTC | 网络传输协议RTP与RTCP

目录 一、UDP与TCP 1. TCP 2. UDP 二、RTP 1. RTP协议头 &#xff08;1&#xff09;V&#xff08;Version&#xff09;字段 &#xff08;2&#xff09;P&#xff08;Padding&#xff09;字段 &#xff08;3&#xff09;X&#xff08;eXtension&#xff09;字段 &#x…

[golang gin框架] 46.Gin商城项目-微服务实战之后台Rbac客户端调用微服务权限验证以及Rbac微服务数据库抽离

一. 根据用户的权限动态显示左侧菜单微服务 1.引入 后台Rbac客户端调用微服务权限验证功能主要是: 登录后显示用户名称、根据用户的权限动态显示左侧菜单,判断当前登录用户的权限 、没有权限访问则拒绝,参考[golang gin框架] 14.Gin 商城项目-RBAC管理,该微服务功能和上一节[g…

.Net Core 动态加载和卸载程序集

从 .Net Core 3.0开始支持程序集的加载和卸载&#xff0c;在 .Net FrameWork中使用独立的应用程序域来实现同样的功能&#xff0c;.Net Core 不支持创建多个应用程序域&#xff0c;所以无法使用多个应用程序域来实现程序集动态加载和卸载。 AssemblyLoadContext 程序集加载上下…

lvs-DR模式:

lvs-DR数据包流向分析 客户端发送请求到 Director Server&#xff08;负载均衡器&#xff09;&#xff0c;请求的数据报文&#xff08;源 IP 是 CIP,目标 IP 是 VIP&#xff09;到达内核空间。 Director Server 和 Real Server 在同一个网络中&#xff0c;数据通过二层数据链路…

猿辅导Motiff亮相IXDC 2023国际体验设计大会,发布新功能获行业高度关注

近日&#xff0c;“IXDC 2023国际体验设计大会”在北京国家会议中心拉开序幕&#xff0c;3000设计师、1000企业、200全球商业领袖&#xff0c;共襄为期5天的用户体验创新盛会。据了解&#xff0c;此次大会是以“设计领导力”为主题&#xff0c;分享全球设计、科技、商业的前沿趋…

iptables

1、iptables iptables分为四表五链&#xff1a; 四表&#xff1a;mangle raw nat filter 五链&#xff1a;input output forward prerouting postrouting 2、查看 查看iptables规则 iptables -vnL -v 查看时显示更详细信息 -n 所有字段以数字形式显示 -L 查看规则列表 …