ORB-SLAM2学习笔记7之System主类和多线程

文章目录

  • 0 引言
  • 1 整体框架
    • 1.1 整体流程
  • 2 System主类
    • 2.1 成员函数
    • 2.2 成员变量
  • 3 多线程
    • 3.1 ORB-SLAM2中的多线程
    • 3.2 加锁

0 引言

ORB-SLAM2是一种基于特征的视觉SLAMSimultaneous Localization and Mapping)系统,它能够从单个、双目或RBGD相机的输入中实时地同时定位相机的位置,并构建环境的三维地图。ORB-SLAM2是在ORB-SLAM的基础上进行改进和扩展的版本。

本文主要对ORB-SLAM2的整体框架,System主类和多线程进行学习和总结,如有理解错误,欢迎指正交流。

1 整体框架

1.1 整体流程

ORB-SLAM2整体框架如下图,主要流程可以概括为以下几个步骤:

请添加图片描述

  1. 特征提取和匹配ORB-SLAM2首先对输入的图像进行特征提取,通常使用Oriented FAST and Rotated BRIEF (ORB)算法来检测和描述图像中的特征点。然后,它使用特征描述子进行特征匹配,以在连续帧之间建立对应关系。

  2. 初始化:初始化阶段是在初始帧上建立初始地图并估计相机的初始位姿。ORB-SLAM2使用基于单目、双目或RGB-D输入的不同方法来进行初始化。在单目或双目情况下,可以使用基于运动的方法或基于平面的方法来估计相机的初始位姿。在RGB-D情况下,可以通过三角测量来估计初始位姿。

  3. 跟踪:跟踪阶段是ORB-SLAM2的核心部分,它通过连续图像帧之间的特征匹配和运动估计来实时定位相机。通过追踪特征点的运动,ORB-SLAM2可以估计相机的位姿变化,并通过优化方法来减小累积误差。

  4. 局部地图更新ORB-SLAM2通过局部地图来表示环境的三维结构。在跟踪过程中,它会不断地更新和扩展局部地图,包括添加新的地图点和关键帧。同时,ORB-SLAM2还会执行一些优化步骤,如相机位姿优化、地图点优化等,以提高地图的一致性和准确性。

  5. 回环检测:回环检测是为了解决定位漂移和累积误差问题的关键步骤。ORB-SLAM2会在跟踪过程中检测可能的回环,并使用回环检测算法来识别和纠正回环。一旦回环被检测到,ORB-SLAM2会进行全局优化来提高整体的一致性。

  6. 闭环优化:闭环优化是在回环检测之后执行的步骤,通过全局优化来进一步提高地图的一致性和准确性。ORB-SLAM2会使用所有的关键帧和地图点进行非线性优化,以减小累积误差并提高整体的位姿和地图质量。

  7. 地图管理ORB-SLAM2会维护一个稠密的局部地图和一个稀疏的全局地图,用于表示环境的三维结构。地图管理模块负责管理和更新地图,包括删除冗余地图点、关键帧的选择和插入、地图点的筛选等。

以上是ORB-SLAM2的主要流程和步骤。通过不断的特征提取、跟踪、地图更新、回环检测和优化,ORB-SLAM2能够实现实时的定位和地图构建,并在大范围和长时间的场景中表现出较好的性能。

也有大佬绘制了更详细的流程图(以mono_tum.cc的运行流程为例,建议下载学习):
👉 https://www.jianguoyun.com/p/Dc1MEhMQ-9KLBxjM3uED

请添加图片描述
此外,还有大佬已经中文注释了ORB_SLAM2可以参考理解代码:
👉 https://github.com/electech6/ORB_SLAM2_detailed_comments/tree/master

但是在学习以上的核心的主要流程之前,需要先熟悉ORB-SLAM2中的System主类和多线程…

2 System主类

System类是ORB-SLAM2系统的主类,主要代码是头文件ORB_SLAM2/include/System.h和源文件ORB_SLAM2/src/System.cc,分析其主要的成员函数和成员变量。

2.1 成员函数

vscode打开System.cc文件,如下,可以看到成员函数的大纲:

请添加图片描述
具体成员函数的类型和定义如下:

成员函数类型定义
System(const string &strVocFile, string &strSettingsFile, const eSensor sensor, const bool bUseViewer=true)public构造System函数
cv::Mat TrackStereo(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timestamp)public跟踪双目相机,返回相机位姿
cv::Mat TrackRGBD(const cv::Mat &im, const cv::Mat &depthmap, const double &timestamp)public跟踪RGBD相机,返回相机位姿
cv::Mat TrackMonocular(const cv::Mat &im, const double &timestamp)public跟踪单目相机,返回相机位姿
void ActivateLocalizationMode()public开启纯定位模式
void DeactivateLocalizationMode()public关闭纯定位模式
bool System::MapChanged()public检测地图是否有较大变化
void System::Reset()public系统复位
void System::Shutdown()public系统关闭
void System::SaveTrajectoryTUM(const string &filename)publicTUM格式保存相机运动轨迹
void System::SaveKeyFrameTrajectoryTUM(const string &filename)publicTUM格式保存关键帧位姿
void System::SaveTrajectoryKITTI(const string &filename)publicKITTI格式保存相机运动轨迹
int System::GetTrackingState()public获取追踪器状态
vector<MapPoint*> System::GetTrackedMapPoints()public获取追踪到的地图点
vector<cv::KeyPoint> System::GetTrackedKeyPointsUn()public获取追踪到的关键帧的点

2.2 成员变量

主要的成员变量及其定义如下:

成员变量类型定义
eSensor mSensorprivate传感器类型单目相机MONOCULAR,双目相机STEREO,彩色深度相机RGBD
ORBVocabulary* mpVocabularyprivateORB字典,保存ORB描述子聚类结果
KeyFrameDatabase* mpKeyFrameDatabaseprivate关键帧数据库,保存ORB描述子倒排索引
Map* mpMapprivate地图
Tracking* mpTrackerprivate追踪器
LocalMapping* mpLocalMapperprivate局部建图器
std::thread* mptLocalMappingprivate局部建图线程
LoopClosing* mpLoopCloserprivate回环检测器
std::thread* mptLoopClosingprivate回环检测线程
Viewer* mpViewerprivate查看器
FrameDrawer* mpFrameDrawerprivate帧绘制器
MapDrawer* mpMapDrawerprivate地图绘制器
std::thread* mptViewerprivate查看器线程
int mTrackingStateprivate追踪状态
std::mutex mMutexStateprivate追踪状态加锁
bool mbActivateLocalizationModeprivate开启纯定位模式
bool mbDeactivateLocalizationModeprivate关闭纯定位模式
std::mutex mMutexModeprivate纯定位模式加锁
bool mbResetprivate系统复位
std::mutex mMutexResetprivate系统复位加锁

都说ORB-SLAM2有三大线程TrackingLocalMappingLoopClosing线程,可从成员变量中只定义了LocalMappingLoopClosing线程,其实Tracking线程就是Syetem类的主线程,构成三大线程,虽然Tracking线程在代码实现上是主线程,但三者的关系其实是并发的。

3 多线程

刚刚学习到ORB-SLAM2中主要有三大线程,其实SLAM项目中一般都会使用多线程,由于某个节点可能同时订阅多个消息,或多个线程函数共享数据,为了防止在多个消息被订阅时发生处理时间过长或阻塞,而导致其他回调函数无法正常使用,也为了防止共享数据时在存储或调用时发生错乱,一般都会使用std::mutex(互斥锁)std::thread(多线程管理)

3.1 ORB-SLAM2中的多线程

ORB-SLAM2中三大线程中的Tracking线程产生关键帧的频率和时机不是固定的,三个线程同时运行,方便LocalMappingLoopClosing线程查询Tracking线程是否产生关键帧。

// Tracking线程主函数
void Tracking::Track() {// 进行跟踪// ...// 若跟踪成功,根据条件判定是否产生关键帧if (NeedNewKeyFrame())// 产生关键帧并将关键帧传给LocalMapping线程KeyFrame *pKF = new KeyFrame(mCurrentFrame, mpMap, mpKeyFrameDB);mpLocalMapper->InsertKeyFrame(pKF);	
}// LocalMapping线程主函数
void LocalMapping::Run() {// 死循环while (1) {// 判断是否接收到关键帧if (CheckNewKeyFrames()) {// 处理关键帧// ...// 将关键帧传给LoopClosing线程mpLoopCloser->InsertKeyFrame(mpCurrentKeyFrame);}// 线程暂停3毫秒,3毫秒结束后再从while(1)循环首部运行std::this_thread::sleep_for(std::chrono::milliseconds(3));}
}// LoopClosing线程主函数
void LoopClosing::Run() {// 死循环while (1) {// 判断是否接收到关键帧if (CheckNewKeyFrames()) {// 处理关键帧// ...}// 查看是否有外部线程请求复位当前线程ResetIfRequested();// 线程暂停5毫秒,5毫秒结束后再从while(1)循环首部运行std::this_thread::sleep_for(std::chrono::milliseconds(5));}
}

3.2 加锁

多线程一般都是和锁一起使用,ORB-SLAM2中多线程和互斥锁一起使用,而互斥锁是有范围的,锁的有效性仅限于大括号{}之内,程序运行出大括号之后就释放锁。另外,一把锁一般在某个时刻只有一个线程能够拿到,比如程序执行到某个需要锁的范围,但是锁正在另一个线程,那当前线程就会先停下来,直到其他线程释放这个锁,当前线程才能继续向下运行。

void KeyFrame::EraseConnection(KeyFrame *pKF) {// 以下大括号中的代码部分加锁{unique_lock<mutex> lock(mMutexConnections);if (mConnectedKeyFrameWeights.count(pKF)) {mConnectedKeyFrameWeights.erase(pKF);bUpdate = true;}}// 程序运行到这里就释放锁,比如下行代码未在加锁范围UpdateBestCovisibles();
}

至此,学习了ORB-SLAM2中的System主类的实现细节和ORB-SLAM2中的多线程。后续在此基础上继续学习ORB-SLAM2中的输入预处理部分的核心—特征点的提取、描述子的生成及特征点匹配等等。


Reference:

  • https://github.com/raulmur/ORB_SLAM2



须知少时凌云志,曾许人间第一流。



⭐️👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍🌔

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98888.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AIGC音视频工具分析和未来创新机会思考

编者按&#xff1a;相较于前两年&#xff0c;2023年音视频行业的使用量增长缓慢&#xff0c;整个音视频行业遇到瓶颈。音视频的行业从业者面临着相互竞争、不得不“卷”的状态。我们需要进行怎样的创新&#xff0c;才能从这种“卷”的状态中脱离出来&#xff1f;LiveVideoStack…

扩散模型实战(四):从零构建扩散模型

推荐阅读列表&#xff1a; 扩散模型实战&#xff08;一&#xff09;&#xff1a;基本原理介绍 扩散模型实战&#xff08;二&#xff09;&#xff1a;扩散模型的发展 扩散模型实战&#xff08;三&#xff09;&#xff1a;扩散模型的应用 本文以MNIST数据集为例&#xff0c;从…

基于Mysql+Vue+Django的协同过滤和内容推荐算法的智能音乐推荐系统——深度学习算法应用(含全部工程源码)+数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境MySQL环境VUE环境 模块实现1. 数据请求和储存2. 数据处理计算歌曲、歌手、用户相似度计算用户推荐集 3. 数据存储与后台4. 数据展示 系统测试工程源代码下载其它资料下载 前言 本项目以丰富的网易云音乐数据为基…

一文彻底理解时间复杂度和空间复杂度(附实例)

目录 1 PNP&#xff1f;2 时间复杂度2.1 常数阶复杂度2.2 对数阶复杂度2.3 线性阶复杂度2.4 平方阶复杂度2.5 指数阶复杂度2.6 总结 3 空间复杂度 1 PNP&#xff1f; P类问题(Polynomial)指在多项式时间内能求解的问题&#xff1b;NP类问题(Non-Deterministic Polynomial)指在…

深入理解分布式架构,构建高效可靠系统的关键

深入探讨分布式架构的核心概念、优势、挑战以及构建过程中的关键考虑因素。 引言什么是分布式架构&#xff1f;分布式架构的重要性 分布式系统的核心概念节点和通信数据分区与复制一致性与一致性模型负载均衡与容错性 常见的分布式架构模式客户端-服务器架构微服务架构事件驱动…

python从入门到精通——完整教程

阅读全文点击《python从入门到精通——完整教程》 一、编程入门与进阶提高 Python编程入门 1、Python环境搭建&#xff08; 下载、安装与版本选择&#xff09;。 2、如何选择Python编辑器&#xff1f;&#xff08;IDLE、Notepad、PyCharm、Jupyter…&#xff09; 3、Pytho…

JetBrains IDE远程开发功能可供GitHub用户使用

JetBrains与GitHub去年已达成合作&#xff0c;提供GitHub Codespaces 与 JetBrains Gateway 之间的集成。 GitHub Codespaces允许用户创建安全、可配置、专属的云端开发环境&#xff0c;此集成意味着您可以通过JetBrains Gateway使用在 GitHub Codespaces 中运行喜欢的IDE进行…

JavaWeb-Listener监听器

目录 监听器Listener 1.功能 2.监听器分类 3.监听器的配置 4.ServletContext监听 5.HttpSession监听 6.ServletRequest监听 监听器Listener 1.功能 用于监听域对象ServletContext、HttpSession和ServletRequest的创建&#xff0c;与销毁事件监听一个对象的事件&#x…

面试热题(不同的二分搜索树)

给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 经典的面试题&#xff0c;这部分涉及了组合数学中的卡特兰数&#xff0c;如果对其不清楚的同学可以去看我以前的博客卡特兰数 …

安防监控/视频集中存储/云存储平台EasyCVR v3.3增加首页告警类型

安防监控/视频集中存储/云存储EasyCVR视频汇聚平台&#xff0c;可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等…

开学有哪些好用电容笔值得买?ipad触控笔推荐平价

因为有了Apple Pencil,使得iPad就成了一款便携的生产力配件&#xff0c;其优势在于&#xff0c;电容笔搭配上iPad可以让专业的绘画师在iPad上作画&#xff0c;而且还能画出各种粗细不一的线条&#xff0c;对于有书写需求的学生党来讲&#xff0c;还是很有帮助的。但本人不敢想像…

基于CNN卷积神经网络的口罩检测识别系统matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................ % 循环处理每张输入图像 for…

PHP基础

PHP&#xff08;外文名:PHP:Hypertext Preprocessor&#xff0c;中文名&#xff1a;“超文本预处理器”&#xff09;是一种免费开源的、创建动态交互性站点的强有力的服务器端脚本语言 <h1>My Name is LiSi!</h1> <script>console.log("This message is…

星际争霸之小霸王之小蜜蜂(四)--事件监听-让小蜜蜂动起来

目录 前言 一、监听按键并作出判断 二、持续移动 三、左右移动 总结&#xff1a; 前言 今天开始正式操控我们的小蜜蜂了&#xff0c;之前学java的时候是有一个函数监听鼠标和键盘的操作&#xff0c;我们通过传过来不同的值进行判断&#xff0c;现在来看看python是否一样的实现…

深度学习最强奠基作ResNet《Deep Residual Learning for Image Recognition》论文解读(上篇)

1、摘要 1.1 第一段 作者说深度神经网络是非常难以训练的&#xff0c;我们使用了一个残差学习框架的网络来使得训练非常深的网络比之前容易得很多。 把层作为一个残差学习函数相对于层输入的一个方法&#xff0c;而不是说跟之前一样的学习unreferenced functions 作者提供了…

SRM系统询价竞价管理:优化采购流程的全面解析

SRM系统的询价竞价管理模块是现代企业采购管理中的重要工具。通过该模块&#xff0c;企业可以实现供应商的询价、竞价和合同管理等关键环节的自动化和优化。 一、概述 SRM系统是一种用于管理和优化供应商关系的软件系统。它通过集成各个环节&#xff0c;包括供应商信息管理、询…

算法leetcode|72. 编辑距离(rust重拳出击)

文章目录 72. 编辑距离&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;二维数组&#xff08;易懂&#xff09;滚动数组&#xff08;更加优化的内存空间&#xff09; go&#xff1a;c&#xff1a;python&a…

MySQL 数据库存储引擎

一、存储引擎概念 数据库存储引擎是数据库底层软件组件&#xff0c;数据库管理系统--DBMS使用数据引擎进行创建、查询、更新和删除数据操作。不同得存储引擎提供不同得存储机制、索引技巧、锁定水平等功能&#xff0c;使用不同得存储引擎&#xff0c;还可以获得特定的功能。现…

快解析Linux搭建FTP服务器:轻松实现文件传输

在Linux操作系统中&#xff0c;搭建FTP服务器是一种常见且重要的操作。快解析提供了便捷的解决方案&#xff0c;帮助用户快速搭建FTP服务器&#xff0c;实现高效的文件传输和共享。本文将介绍Linux搭建FTP服务器的定义、作用以及其独特的优势&#xff0c;助您了解并利用这一强大…