SPSS--如何使用分层分析以及分层分析案例分享

     分层分析:将资料按某个或某些需要控制的变量的不同分类进行分层,然后再估计暴露因子与某结局变量之间关系的一种资料分析方法
分层分析的最重要的用途是评估和控制混杂因子所致的混杂偏倚。通过按混杂因子分层,可使每层内的两个比较组在所控制的混杂因子方面齐同,从而消除混杂作用;另一个重要用途是评估和描述效应修饰。另外,分层分析还可用于描述随访研究中的失访问题和竞争风险、研究两因子之间的生物学交互作用、以及生存分析和诱导期分析。

1.基本步骤概述

① 分层列表

将资料按混杂因子分层后,然后分别计算各层的效应估计值。

② 检验层别效应估计值

在绝大多数分层分析中,效应估计值在各层都有一些变化,而这些变化的意义却不尽相同。有些是随机变异的结果,有些是各种偏倚所致的,而有些却是极其重要的需要揭示的结果(如效用修饰或交互作用)。因此,在计算出各层的效应估计值后,应对其进行检验与分析,以明确层别效应估计值的变化有无统计学意义和重要的流行病学意义。明确这些问题对决定下一步用什么分析方法和如何报告分层分析的结果将起关键作用。因此,层别效应估计值的检验是至关重要的。然面,这一步骤并非总是可行的。有些变量可能因为种类太多而无法计算每层的效应估计值。如要研究家庭所致的潜在混杂作用,则因每个家庭的受试者太少而不能从每一个家庭计算出一个稳定的和可信的效应估计值。


3.层别效应的一致性假设与检验

绝大多数的分层分析方法是以各层效应大小一致( 即同质的)为基础的。即要求各层的效应估计值相等。在这种情况下,这些层别估计值就能够通过方差的倒数加权而有效地被平均,计算出一个合并估计值。因此,在分层分析中一般均假设层别效应是一致的。然而,即使各层的效应大小是一致的,通过抽样研究得来的资料其层别效应估计值多少会有差异。因此,关键是要判断层别效应估计值的变化程度与一致性效应的可能随机变异是否一致。那么如何判断这种一致性假 设是否正确呢?简单的办法是只要致性假设与资料或其他证据不明显矛盾,则可认为是合理的。然而这种推测有太大的主观性,调查者一般更希望对这种假设的正确性有一个正式的统计学显著性检验。

层别效应一致性的假设检验即 为同质性检验( homogeneity test)(即假设在各层有一个恒定的效应估计值) ,它是以一致效应的总估计值与层别效应估计值的比较为基础的,即在同质性假设条件下,期望数与实际观察数的比较。因此,在作同质性检验时,先要在同质性假设条件下,求出一个一致效应的总估计值,然后与各层别估计值比较。

由于比值测量的一致性通常意味着差异测量的异质性,而差异测量的致性也同样意味着比值测量的异质性。因此,对比值和差异测量的一致性需要单独评价。


4. 调整控制混杂 

如果同质性检验结果证明层别效应是致的,分层分析则以调整控制混杂为主。其计算主要包括一致效应的合并点估计区间估计及统计检验的P值。依据资料类型所用的效应测量指标、样本大小及要求精确度高低的不同,有不同的计算方法。


5.评价和描述效用修饰

如果同质性检验的结果拒绝了检验假设,即层间效应估计值的差异有统计学意义时,则认为该变量具有效用修饰作用。此时,分层分析的目标指向效用修饰的评价与描述。

具体步骤与方法

案例分析

在某项关于吸烟与胃癌关系的病例对照研究中,采用分层分析探讨性别的可能混杂作用,数据整理后如下图所示。

【SPSS】

(Ⅰ):频数加权,对变量“freqencies”作加权处理

(Ⅱ):analyze→descriptive statisics→crosstabs

弹出如下所示对话框

 (Ⅲ):将变量group(病例组与对照组)选入row,smoking选入column,sex选入layer(层)

(Ⅳ):单击Statistics(统计量),勾选Chi-square,Risk(OR),以及

Cochran's and Mantel-Haenszel statistics 

结果解析

(Ⅰ)
同质性检验:chi-square=0.31,P=0.58 ,各层比值比一致。也即,在不同性别中,吸烟与胃癌的发生是相同的。

(Ⅱ)该资料显示:male:OR=1.87female:OR=1.506不考虑性别:OR=2.539
分层前后,OR值出现不等,即性别起了一定混杂作用。

(Ⅲ)
调整后的Estimate为1.792,结合粗OR(2.539),即吸烟与肺癌的研究中,性别有一定的混杂作用。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/99071.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零做软件开发项目系列之二——需求调研

在接到软件开发任务之后,第一件要做的事情就是进行需求调研工作,基于前期的沟通以及合同向用户了解具体需求,从而有针对性地开展后续工作。整个调研过程分为调研准备,调研实施,需求分析。 1 调研准备 俗话说&#x…

go语言恶意代码检测系统--对接前端可视化与算法检测部分

Malware Detect System 1 产品介绍 恶意代码检测系统。 2 产品描述 2.1 产品功能 功能点详细描述注册账号未注册用户注册成为产品用户,从而具备享有产品各项服务的资格登录账号用户登录产品,获得产品提供的各项服务上传恶意样本用户可以将上传自己的…

leetcode 279. 完全平方数

2023.8.18 与零钱兑换相似&#xff0c;本题属于完全背包问题&#xff1a;完全平方数为物品&#xff0c;整数n为背包。 直接上代码&#xff1a; class Solution { public:int numSquares(int n) {vector<int> dp(n1 , INT_MAX);dp[0] 0;for(int i1; i*i<n; i){for(in…

九耶丨阁瑞钛伦特-Spring boot与Spring cloud 之间的关系

Spring Boot和Spring Cloud是两个相互关联的项目&#xff0c;它们可以一起使用来构建微服务架构。 Spring Boot是一个用于简化Spring应用程序开发的框架&#xff0c;它提供了自动配置、快速开发的特性&#xff0c;使得开发人员可以更加轻松地创建独立的、生产级别的Spring应用程…

高效实用小工具之Everything

一&#xff0c;简介 有时候我们电脑文件较多时&#xff0c;想快速找到某个文件不是一件容易的事情&#xff0c;实用windows自带的搜素太耗时&#xff0c;效率不高。今天推荐一个用来搜索电脑文件的小工具——Everything&#xff0c;本文将介绍如何安装以及使用everything&…

FPGA中锁存器(latch)、触发器(flip-flop)以及寄存器(register)详解

文章目录 1 定义1.1 锁存器&#xff08;latch&#xff09;1.2 触发器&#xff08;flip-flop&#xff09;1.3 寄存器&#xff08;register&#xff09; 2 比较2.1 锁存器&#xff08;Latch&#xff09;危害即产生原因2.2 寄存器和锁存器的区别2.3 锁存器和触发器的区别 3 结构3.…

如何将常用的jdbc方法封装起来???

你是否还在为每次新建项目连接数据库而烦恼&#xff1f;&#xff1f;&#xff1f;&#xff08;教你一次代码&#xff0c;简单完成每次连接&#xff09; 1.建立maven项目 还没下载安装或者不会建立maven项目的可以看这里哦&#xff1a;maven的下载安装与配置环境变量&#xff0…

主机防护的重要性和方式

01 主机防护的重要性 主机防护是网络安全的重要组成部分。在互联网时代&#xff0c;网络攻击成为了一种常见的威胁&#xff0c;而主机防护则是保护计算机系统免受网络攻击的重要手段。 主机防护可以防范各种网络攻击&#xff0c;如病毒、木马、黑客攻击等&#xff0c;从而保…

如何利用 ChatGPT 进行自动数据清理和预处理

推荐&#xff1a;使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 ChatGPT 已经成为一把可用于多种应用的瑞士军刀&#xff0c;并且有大量的空间将 ChatGPT 集成到数据科学工作流程中。 如果您曾经在真实数据集上训练过机器学习模型&#xff0c;您就会知道数据清理和预…

《Kubernetes部署篇:Ubuntu20.04基于外部etcd+部署kubernetes1.24.16集群(多主多从)》

一、架构图 如下图所示: 二、环境信息 1、部署规划 主机名K8S版本系统版本内核版本IP地址备注k8s-master-631.24.16Ubuntu 20.04.5 LTS5.15.0-69-generic192.168.1.63master节点 + etcd节点k8s-master-641.24.16Ubuntu 20.04.5 LTS5.15.0-69-generic192.168.1.64master节点 + …

【算法刷题之数组篇(1)】

目录 1.leetcode-59. 螺旋矩阵 II&#xff08;题2.题3相当于二分变形&#xff09;2.leetcode-33. 搜索旋转排序数组3.leetcode-81. 搜索旋转排序数组 II(与题目2对比理解)&#xff08;题4和题5都是排序双指针&#xff09;4.leetcode-15. 三数之和5.leetcode-18. 四数之和6.leet…

ByteV“智农”平台--数字乡村可视化

“智农”平台基于自主可控的数字孪生技术、物联网技术、大数据技术&#xff0c;构建全流程的新型农业一体化管理平台&#xff0c;围绕产运销管理全流程&#xff0c;实现生产->存储->包装->运输->销售的全链条管理。融合农业数据管理、农业数据预警显示、多维数据综…

回归预测 | MATLAB实现IPSO-SVM改进粒子群优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现IPSO-SVM改进粒子群优化算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现IPSO-SVM改进粒子群优化算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xf…

Java智慧工地系统源码(微服务+Java+Springcloud+Vue+MySQL)

智慧工地系统是依托物联网、互联网、AI、可视化建立的大数据管理平台&#xff0c;是一种全新的管理模式&#xff0c;能够实现劳务管理、安全施工、绿色施工的智能化和互联网化。围绕施工现场管理的人、机、料、法、环五大维度&#xff0c;以及施工过程管理的进度、质量、安全三…

WPF国际化的实现方法(WpfExtensions.Xaml)

https://blog.csdn.net/eyupaopao/article/details/120090431 resx资源文件实现 resx资源文件&#xff0c;实现的过程比第一种复杂&#xff0c;但resx文件本身编辑比较简单&#xff0c;维护起来比较方便。需要用到的框架&#xff1a;WpfExtensions.Xaml 为每种语言添加.resx资…

Nginx的介绍

本资料转载于传智教育-解锁你的IT职业薪未来&#xff0c;仅用于学习和讨论&#xff0c;如有侵权请联系 视频地址&#xff1a;04-Nginx的优点_哔哩哔哩_bilibili 资源文档&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1RlFl92FdxRUqc858JSxPSQ 提取码&#xff1a;12…

Postman接口自动化测试实例

一.实例背景 在实际业务中&#xff0c;经常会出现让用户输入用户密码进行验证的场景。而为了安全&#xff0c;一般都会先请求后台服务器获取一个随机数做为盐值&#xff0c;然后将盐值和用户输入的密码通过前端的加密算法生成加密后串传给后台服务器&#xff0c;后台服务器接到…

每个.NET开发都应掌握的C#委托事件知识点

上篇文章讲述了C#接口的知识点&#xff0c;本文将介绍C#委托事件知识点。C#作为.NET开发的核心语言之一&#xff0c;提供了丰富的特性来支持面向对象编程和事件驱动的模型。其中&#xff0c;委托和事件是C#中不可或缺的关键概念&#xff0c;每个.NET开发者都应该深入理解它们的…

常用字符串匹配算法

一、BF匹配 BF算法中的BF是Brute Force的缩写&#xff0c;中文叫作暴力匹配算法&#xff0c;也叫朴素匹配算法。 BF算法的时间复杂度很高&#xff0c;是O(nm)&#xff0c;但在实际的开发中&#xff0c;它却是一个比较常用的字符串匹配算法。 第一&#xff0c;实际的软件开发中…

JVM——配置常用参数,GC调优策略

文章目录 JVM 配置常用参数Java内存区域常见配置参数概览堆参数回收器参数项目中常用配置常用组合 常用 GC 调优策略GC 调优原则GC 调优目的GC 调优策略 JVM 配置常用参数 Java内存区域常见配置参数概览堆参数&#xff1b;回收器参数&#xff1b;项目中常用配置&#xff1b;常…