【图像去噪的滤波器】非局部均值滤波器的实现,用于鲁棒的图像去噪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

Buades等人提出的非局部均值滤波器是一种用于图像去噪的方法,它能够有效地去除图像中的噪声,并保持图像的细节和边缘。

该方法的核心思想是利用图像中的非局部相似性来进行去噪。传统的均值滤波器只考虑局部邻域内的像素值,而非局部均值滤波器则考虑了整个图像中与当前像素相似的像素值。

具体实现过程如下:
1. 首先,对于图像中的每个像素,选择一个固定大小的邻域窗口。该窗口的大小决定了滤波器的范围。
2. 然后,计算该窗口内每个像素与当前像素的相似性。相似性可以通过计算像素之间的欧氏距离或其他相似度度量来衡量。
3. 根据相似性计算出的权重,对邻域窗口内的像素进行加权平均。相似性越高的像素将具有更大的权重,从而更大程度上影响当前像素的值。
4. 重复以上步骤,对图像中的每个像素进行处理,得到去噪后的图像。

非局部均值滤波器的优点是能够保持图像的细节和边缘,同时去除噪声。它利用了图像中的全局信息,因此对于复杂的纹理和结构具有较好的去噪效果。此外,该方法还具有较好的计算效率,可以在实时应用中使用。

然而,非局部均值滤波器也存在一些缺点。首先,该方法对于大尺寸的窗口需要较高的计算成本,因此在处理大型图像时可能会变得很慢。其次,该方法对于噪声的强度和类型较为敏感,可能会在某些情况下产生伪影或模糊效果。

总体而言,Buades等人提出的非局部均值滤波器是一种有效的图像去噪方法,可以在实际应用中得到广泛的应用。

📚2 运行结果

 主函数代码:

clear
clc
clf
colormap(gray)

% create example image
ima=100*ones(100);
ima(50:100,:)=50;
ima(:,50:100)=2*ima(:,50:100);
fs=fspecial('average');
ima=imfilter(ima,fs,'symmetric');

% add some noise
sigma=10;
rima=ima+sigma*randn(size(ima));

% show it
imagesc(rima)
drawnow

% denoise it
fima=NLmeansfilter(ima,5,2,sigma);

% show results
clf
subplot(2,2,1),imagesc(ima),title('original');
subplot(2,2,2),imagesc(rima),title('noisy');
subplot(2,2,3),imagesc(fima),title('filtered');
subplot(2,2,4),imagesc(rima-fima),title('residuals');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]孙忠贵.非局部均值滤波器研究及应用[D].南京航空航天大学[2023-08-05].

[2]王益艳.图像去噪算法的研究[D].陕西师范大学[2023-08-05].DOI:CNKI:CDMD:2.2009.046234.

[3]孙晓欢,张洁,杨丰.无抽样方向滤波器组用于图像去噪的方法研究[J].计算机工程与应用, 2010, 46(16):5.DOI:10.3778/j.issn.1002-8331.2010.16.049.

[4]张小华,陈佳伟,孟红云,等.基于方向增强邻域窗和非下采样Shearlet描述子的非局部均值图像去噪[J].电子与信息学报, 2011, 33(11):6.DOI:10.3724/SP.J.1146.2011.00221.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/99361.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

认识Junit

1. 前言 2. Junit注解 2.1. 常用的注解 2.1.1. Test 表示当前方法是一个测试方法(不需要main来执行) Test void Test01() throws InterruptedException {System.out.println("测试用例1");WebDriver webDriver new ChromeDriver();webDriver.get("https:/…

Web会话技术

会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束。在一次会话中可以包含多次请求和响应 会话跟踪:一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一浏览器,…

快速入门vue3新特性和新的状态管理库pinia

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 Vue3.3新特性 defineOptions defineModel pinia 介绍 与 Vuex 3.x/4.x 的比较 安装 核心概念 定义…

ASP.NET实验室信息管理系统源码 LIMS成品源码

实验室信息管理系统(Laboratory Information Management System)简称LIMS系统,是指通过计算机对实验室的各种信息进行管理的计算机软、硬件系统,并将实验室的设备各种信息通过计算机网络连接起来,采用科学的管理思想和…

⛳ TCP 协议详解

目录 ⛳ TCP 协议详解🎨 一、TCP / IP 协议的分层模型🏓 1.1、应用层🧸 1.2、传输层🔮 1.3、网络层🎯 1.4、链路层 🏭 二、HTTP 报文传输原理🥅 2.1、HTTP 报文传输💎 2.2、封装和分…

贝锐蒲公英助力电子公交站牌联网远程运维,打造智慧出行新趋势

在现代城市公共交通系统中,我们随处可见电子公交站牌的身影。作为公共交通服务的核心之一,电子公交站牌的稳定运行至关重要,公交站台的实时公交状况、公共广告信息,是市民候车时关注的焦点。 某交通科技公司在承接某市智能电子站牌…

【Python】Web学习笔记_flask(6)——会话session对象

处理利用cookie来判断用户登录外,也可以使用session来判断用户是否登录 html代码和cookie对象的设置相同 from flask import Flask,request,render_template,make_response,session,url_for,redirectappFlask(__name__) app.secret_keyps1234567890 app.route(/) …

SpringBoot + Mybatis多数据源

一、配置文件 spring: # datasource: # username: root # password: 123456 # url: jdbc:mysql://127.0.0.1:3306/jun01?characterEncodingutf-8&serverTimezoneUTC # driver-class-name: com.mysql.cj.jdbc.Driverdatasource:# 数据源1onedata:jdbc-url: j…

基于X86六轮差速移动机器人运动控制器设计与实现(一)软件与硬件架构

本文研究的六轮差速移动机器人 (Six-Wheeled Differential Mobile Robot , SWDMR) 为了满足资源站到资源站点对点的物资运输,对机器人的跨越障碍能力 有较高的要求。对比传统的四轮移动机器人,六轮移动机器人能够提供更强的驱动 力&#…

【TypeScript】元组

元组(Tuple)是 TypeScript 中的一种特殊数据类型,它允许你定义一个固定数量和类型的元素组合。元组可以包含不同类型的数据,每个数据的类型在元组中都是固定的。以下是 TypeScript 中元组的基本用法和特点: // 声明一…

企微配置回调服务

1、企微配置可信域名 2、企微获取成员userID 3、企微获取用户敏感数据 4、企微配置回调服务 文章目录 一、简介1、概述2、相关文档地址 二、企微配置消息服务器1、配置消息接收参数2、参数解析3、参数拼接规则 三、代码编写—使用已有库1、代码下载2、代码修改3、服务代码编写 …

Linux系统下检验Tensorflow 2.xx版本和1.xx版本是否安装成功

目录 版本问题Tensorflow 1.xx的测试代码:Tensorflow 2.xx的测试代码:Tensorflow 2.6版本实际的测验结果 总结 版本问题 查询资料发现,多数检验Tensorflow是否安装成功的方法,多数方法都是1.xx版本的,直接使用1.xx版本…

Django的模型

定义模型 from django.db import models class User(models.Model):# 类属性是表示表的字段username models.CharField(max_length50,uniqueTrue)password models.CharField(max_length200)create_time models.DateTimeField(auto_now_addTrue) # auto_now_add新增数据时间…

【Kubernetes】Rancher管理集群

目录 1、安装 rancher 2、登录 Rancher 平台 3、Rancher 管理已存在的 k8s 集群 4、Rancher 部署监控系统 5、使用 Rancher 仪表盘管理 k8s 集群 以创建 nginx 服务为例 创建名称空间 namespace 创建 Deployment 资源 创建 service 1、安装 rancher 在 所有 node 节点下…

无代码集成飞书连接更多应用

场景描述: 基于飞书开放平台能力,无代码集成飞书连接更多应用,打通数据孤岛。通过Aboter可轻松搭建业务自动化流程,实现多个应用之间的数据连接。 支持包括飞书事件监听和接口调用的能力: 事件监听: 用…

模型预测笔记(二):结合SMOTE来进行数据不均衡处理实操

文章目录 数据不均衡危害如何解决SMOTE原理代码效果 数据不均衡危害 在模型预测中,数据不均衡是指不同类别的样本数量差异很大。这种情况可能会对模型的性能和结果产生一些危害: 偏斜的预测结果:由于某些类别的样本数量较少,模型…

vue3中使用第三方插件mitt实现任意组件通讯

vue3中使用第三方插件mitt实现任意组件通讯 组件通讯是vue3组合式开发的核心之一,现在我在写代码时,一个组件的代码超过了200行,基本都会拆分组件。组件拆分后,组件之间的通讯就很重要,总结了一下,目前有这…

Leetcode.118 杨辉三角

题目链接 Leetcode.118 杨辉三角 easy 题目描述 给定一个非负整数 n u m R o w s numRows numRows,生成「杨辉三角」的前 n u m R o w s numRows numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出:…

go、java、.net、C#、nodejs、vue、react、python程序问题进群咨询

1、面试辅导 2、程序辅导 3、一对一腾讯会议辅导 3、业务逻辑辅导 4、各种bug帮你解决。 5、培训小白 6、顺利拿到offer

Streamlit项目:基于讯飞星火认知大模型开发Web智能对话应用

文章目录 1 前言2 API获取3 官方文档的调用代码4 Streamlit 网页的搭建4.1 代码及效果展示4.2 Streamlit相关知识点 5 结语 1 前言 科大讯飞公司于2023年8月15日发布了讯飞认知大模型V2.0,这是一款集跨领域知识和语言理解能力于一体的新一代认知智能大模型。前日&a…