基于ACF,AMDF算法的语音编码matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................
plotFlag        = 0; %绘图标识位
istrain         = 0;
%1.预处理,滤波
%1.预处理,滤波%2.预加重 
%2.预加重 %3.清、浊音判决的分析及量化
%低带能量:通过一个截止频率为900Hz 阻带为10dB的低通滤波器
Wp   = 900/4000;
[b,a]= cheby2(6,10,Wp,'low');
yLF  = filter(b,a,yPre);
plot3;%成帧
[yFrame,nF]    = func_enFrame(yLF); %短时能量来区分清/浊音
VoiceSoundFlag = func_short_energy(yFrame,nF);%二阶逆滤波(白化滤波)
yFrame         = inverseFilter(yFrame,nF); %获得基音周期(AMDF)
pitchT         = func_GetPitch(yFrame,VoiceSoundFlag,nF); %计算增益(RMS)
RMS            = func_RMS(yFrame,VoiceSoundFlag,pitchT,nF);%LPC预测阶数
[Vlpc,Vlsf]    = func_LPC_Order(yFrame,nF);%矢量量化采用王炳锡书5.8章红圈的方法,并组帧
%训练,得到码本,这里需要大量的语音库,这里仅仅提供算法流程,训练库使用少量样本
if istrain == 1tops; load Train\code_save.mat 
elseload Train\code_save.mat 
endfigure;
K1 = 1;
K2 = 2;
plot(lsf{1}(K1,:), lsf{1}(K2,:), 'xr');
hold on;
plot(code{1}(K1,:),code{1}(K2,:), 'vk');
hold on;
plot(lsf{2}(K1,:), lsf{2}(K2,:),  'xb');
hold on;
plot(code{2}(K1,:),code{2}(K2,:), '+k');
hold on;xlabel('2th Dimension');
ylabel('6th Dimension');
legend('Speaker 1', 'Codebook 1', 'Speaker 2', 'Codebook 2');
title('2D plot of accoustic vectors');%VQ发送
Frame = func_vq_trans(Vlsf,pitchT,RMS,VoiceSoundFlag,nF,code);%计算压缩对比
Rate = func_size_cal(yOri,Frame);%接收,矢量解码器
[Vlsf3,VQ_decode,lsf_code,VoiceSoundFlag3,RMS3,pitchT3] = func_vq_rec(Frame,nF,code);%解码
yCom = func_decode(Vlsf3,VoiceSoundFlag3,pitchT3,RMS3,nF);%去加重
b    = 1;
a    = [1 -0.9375];
yCom = filter(b,a,yCom);
sound(yCom,Fs); figure;
subplot(311);
plot(yOri);subplot(312);
plot(pitchT);subplot(313);
plot(yCom);
03_006m

4.算法理论概述

       语音编码是一种将连续的语音信号转换为数字数据的过程,以便在数字通信和存储应用中使用。基于ACF和AMDF的编码算法是一种经典的方法,它在语音信号处理领域得到了广泛应用。

基于ACF和AMDF的语音编码过程包括以下步骤:

预处理:对原始语音信号进行预加重、分帧、窗函数等处理,以提取有用的特征。
计算ACF和AMDF:计算每一帧的ACF和AMDF函数,以便估计基频的候选周期。
基频估计:通过在AMDF函数中寻找最小值,确定基频的候选周期。
量化:将基频的候选周期量化为离散值,以便编码和传输。
编码:使用合适的编码方法(如霍夫曼编码)对量化后的数据进行编码,以减小数据的传输带宽。

基于ACF和AMDF的语音编码方法在以下领域得到应用:
电话通信:在语音通话中,使用这些方法进行语音信号的压缩和传输。
语音存储:将语音信号转换为数字数据,以便在设备中进行存储。
语音识别:用于基频估计,有助于识别语音中的音素和音节。
语音合成:用于合成自然的语音声音。


       基于ACF和AMDF的语音编码方法利用了自相关性和平均差分来估计语音信号中的基频信息。这些方法在语音处理中有着重要的应用,为语音通信、存储和分析提供了有效的解决方案。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/99756.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

飞机打方块(二)游戏界面制作

一、背景 1.新建bg节点 二、飞机节点功能实现 1.移动 1.新建plane节点 2.新建脚本GameController.ts,并绑定Canvas GameControll.ts const { ccclass, property } cc._decorator;ccclass export default class NewClass extends cc.Component {property(cc.Node)canvas:…

二、7.用户进程

TSS 是 x86CPU 的特定结构,被用来定义“任务”,它是内置到处理器原生支持的多任务的一种形式。 通过 call 指令+TSS 选择子的形式进行任务切换,此过程大概分成 10 步,这还是直接用 TSS 选择子进行任务切换的步骤&…

Hive底层数据存储格式

前言 在大数据领域,Hive是一种常用的数据仓库工具,用于管理和处理大规模数据集。Hive底层支持多种数据存储格式,这些格式对于数据存储、查询性能和压缩效率等方面有不同的优缺点。本文将介绍Hive底层的三种主要数据存储格式:文本文件格式、Parquet格式和ORC格式。 一、三…

jenkins同一jar包部署到多台服务器

文章目录 安装插件配置ssh服务构建完成后执行 没有部署过可以跟这个下面的步骤先部署一遍,我这篇主要讲jenkins同一jar包部署到多台服务器 【Jenkins】部署Springboot项目https://blog.csdn.net/qq_39017153/article/details/131901613 安装插件 Publish Over SSH 这…

三款远程控制软件对比,5大挑选指标:安全、稳定、易用、兼容、功能

陈老老老板🤴 🧙‍♂️本文专栏:生活(主要讲一下自己生活相关的内容)生活就像海洋,只有意志坚强的人,才能到达彼岸。 🧙‍♂️本文简述:三款远程控制软件对比,5大挑选指标&#xff1…

openpnp - 板子上最小物料封装尺寸的选择

文章目录 openpnp - 板子上最小物料封装尺寸的选择概述END openpnp - 板子上最小物料封装尺寸的选择 概述 现在设备调试完了, 用散料飞达载入物料试了一下. 0402以上贴的贴别准, 贴片流程也稳, 基本不需要手工干预. 0201可以贴, 但是由于底部相机元件视觉识别成功率不是很高…

HCIP学习--三层架构

未完成 网关作为了一个广播域的中心出口;生成树的根网桥也是一棵树的中心,也是流量的集合点; 若将两者分配不同的设备将导致网络通讯资源浪费,故强烈建议两者在同一台汇聚层设备上 举个例子 看下图若VLAN2要去找VLAN3设备需要…

保险龙头科技进化论:太保的六年

如果从2013年中国首家互联网保险公司——众安在线的成立算起,保险科技在我国的发展已走进第十个年头。十年以来,在政策指引、技术发展和金融机构数字化转型的大背景下,科技赋能保险业高质量发展转型已成为行业共识。 大数据、云计算、人工智…

spring如何进行依赖注入,通过set方法把Dao注入到serves

1、选择Generate右键鼠标 你在service层后面方法的这些: 2、UserService配置文件的写法是怎样的: 3、我们在UserController中执行一下具体写法: 最后我们执行一下 : 4、这里可能出现空指针,因为你当前web层,因为你new这个对象根…

YOLO目标检测算法训练过程学习记录

先前已经完成过YOLO系列目标检测算法的调试过程,今天主要是将所有的调试加以总结 这里的conda环境就不再赘述了,直接使用requirement.txt文件的即可,也可以参考YOLOX的配置过程5 数据集处理 YOLOv5有自己的数据集格式,博主的数据…

HarmonyOS/OpenHarmony应用开发-ArkTS语言渲染控制ForEach循环渲染

ForEach基于数组类型数据执行循环渲染。说明,从API version 9开始,该接口支持在ArkTS卡片中使用。 一、接口描述 ForEach(arr: any[], itemGenerator: (item: any, index?: number) > void,keyGenerator?: (item: any, index?: number) > stri…

Java云原生框架Quarkus初探

Java云原生框架Quarkus初探 Quarkus 介绍 Quarkus 是一个云原生,容器优先的Java应用框架,它号称是超音速和亚原子的框架,主要特点是构建速度、启动速度快和占用资源少等特点。它为OpenJDK HotSpot和GraalVM量身定制, 根据Java库和…

postgresql中基础sql查询

postgresql中基础sql查询 创建表插入数据创建索引删除表postgresql命令速查简单查询计算查询结果 利用查询条件过滤数据模糊查询 创建表 -- 部门信息表 CREATE TABLE departments( department_id INTEGER NOT NULL -- 部门编号,主键, department_name CHARACTE…

LLM提示词工程和提示词工程师Prompting and prompt engineering

你输入模型的文本被称为提示,生成文本的行为被称为推断,输出文本被称为完成。用于提示的文本或可用的内存的全部量被称为上下文窗口。尽管这里的示例显示模型表现良好,但你经常会遇到模型在第一次尝试时无法产生你想要的结果的情况。你可能需…

vue开发环境搭建(WebStorm)

一、安装Node.js,搭建Vue环境 1、访问Node.js官网(https://nodejs.org/en/download/)进行安装包下载。 2、下载成功之后运行安装程序,进行安装。 如果是用安装程序进行安装,在安装过程中会自动进行Nodejs环境变量的配置…

css 实现svg动态图标效果

效果演示&#xff1a; 实现思路&#xff1a;主要是通过css的stroke相关属性来设置实现的。 html代码: <svgt"1692441666814"class"icon"viewBox"0 0 1024 1024"version"1.1"xmlns"http://www.w3.org/2000/svg"p-id"…

数据结构:栈和队列

文章目录 一、栈1.栈的概念及结构1.栈的概念及结构2.栈的实现 2.栈的顺序表实现1.栈的结构体和实现的功能函数2.栈的初始化&#xff0c;入栈和出栈操作3.栈的其他操作 3.栈的链表实现1.栈的结构体和实现的功能函数2.栈功能函数的实现 二、队列1.队列的概念及结构1.队列的概念及…

java面向对象——继承以及super关键字

继承的概念 1. 被继承的类称为父类&#xff08;超类&#xff09;&#xff0c;继承父类的类都称为子类&#xff08;派生类&#xff09; 2. 继承是指一个对象直接使用另一个对象的属性和方法&#xff0c;但是能继承非私有的属性和方法&#xff1b;(1) 构造方法不能被继承。(2) 但…

商城-学习整理-高级-商城业务-异步线程池(十三)

目录 一、线程1、初始化线程的 4 种方式2、线程池的七大参数3、线程池的运行流程&#xff1a;4、例子5、常见的 4 种线程池6、开发中为什么使用线程池 二、CompletableFuture 异步编排0、业务场景&#xff1a;1、创建异步对象2、计算完成时回调方法3、handle 方法4、线程串行化…

【无监督】6、SimSiam | 基于孪生网络的对比学习的成功源于梯度截断!

文章目录 一、背景二、方法三、效果 论文&#xff1a;Exploring Simple Siamese Representation Learning 出处&#xff1a;FAIR | 何恺明大佬 本文作者抛出了两个爆炸&#x1f4a5;性结论&#xff1a; 结论一&#xff1a;基于孪生网络的对比的学习的成功&#xff0c;不源于 …