Central cache
threadcache是每个线程独享,而centralcache是多线程共享,需要加锁(桶锁)一个桶一个锁
解决外碎片问题:内碎片:申请大小超过实际大小;外碎片:空间碎片不连续,导致无法申请大块空间
span
在存储管理中,"span"是一个术语,用于描述连续的内存块或磁盘块的范围。
在内存管理中,一个span通常是一系列连续的内存页或内存块,它们被分配给一个进程或数据结构。一个span的大小可以根据需求而变化,通常是以页的大小为单位进行分配。
在磁盘管理中,一个span通常是一系列连续的磁盘块,它们被分配给一个文件或数据结构。一个span的大小可以根据需求而变化,通常是以磁盘块的大小为单位进行分配。
使用span的好处是可以提高内存或磁盘的利用率,避免了碎片化的问题。通过分配连续的span,可以更有效地利用存储资源,并提高数据的读写性能。
span设计成双向链表 带头双向循环,插入删除更加高效
32位机器和64位机器的页数不同!!!!!!!!!
使用条件编译在预处理阶段解决
#ifdef _WIN32typedef size_t PAGE_ID;
#elif _WIN64typedef unsigned long long PAGE_ID;
#endif
但是在64位下还是会有问题
所有要调换顺序
#ifdef _WIN64typedef unsigned long long PAGE_ID;
#elif _WIN32typedef size_t PAGE_ID;
#endif
// 管理多个连续页大块内存跨度结构
struct Span
{PAGE_ID _pageId = 0; // 大块内存起始页的页号size_t _n = 0; // 页的数量Span* _next = nullptr; // 双向链表结构Span* _prev = nullptr;size_t _useCount = 0; // 切好小块内存,被分配给thread cache的计数void* _freeList = nullptr; // 切好的小块内存的自由链表
};// 带头双向循环链表
class SpanList
{
public:SpanList(){_head = new Span;_head->_next = _head;_head->_prev = _head;}Span* Begin(){return _head->_next;}Span* End(){return _head;}bool Empty(){return _head->_next == _head;}void PushFront(Span* span){Insert(Begin(), span);}Span* PopFront(){Span* front = _head->_next;Erase(front);return front;}void Insert(Span* pos, Span* newSpan){assert(pos);assert(newSpan);Span* prev = pos->_prev;// prev newspan posprev->_next = newSpan;newSpan->_prev = prev;newSpan->_next = pos;pos->_prev = newSpan;}void Erase(Span* pos){assert(pos);assert(pos != _head); //不能删除哨兵位Span* prev = pos->_prev;Span* next = pos->_next;prev->_next = next;next->_prev = prev;//不去删除,因为空间是要还给下一层}private:Span* _head;
public:std::mutex _mtx; // 桶锁
};
CentralCache类
只能有一个,所以采用单例模式
// 单例模式
class CentralCache
{
public:static CentralCache* GetInstance(){return &_sInst;}// 获取一个非空的spanSpan* GetOneSpan(SpanList& list, size_t byte_size);// 从中心缓存获取一定数量的对象给thread cachesize_t FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size);private:SpanList _spanLists[NFREELIST];private:CentralCache(){}CentralCache(const CentralCache&) = delete;static CentralCache _sInst;
};
threadcache从centralcache中获取span
首先明确一次获取的数量
// 一次thread cache从中心缓存获取多少个static size_t NumMoveSize(size_t size){assert(size > 0);// [2, 512],一次批量移动多少个对象的(慢启动)上限值// 小对象一次批量上限高// 小对象一次批量上限低int num = MAX_BYTES / size;if (num < 2)num = 2;if (num > 512)num = 512;return num;}
实现获取,逐步递增。获取一个时直接返回就行,不是一个时先将其串联起来再返回头
void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{// 慢开始反馈调节算法// 1、最开始不会一次向central cache一次批量要太多,因为要太多了可能用不完// 2、如果你不要这个size大小内存需求,那么batchNum就会不断增长,直到上限// 3、size越大,一次向central cache要的batchNum就越小// 4、size越小,一次向central cache要的batchNum就越大size_t batchNum = min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));if (_freeLists[index].MaxSize() == batchNum){_freeLists[index].MaxSize() += 1;}void* start = nullptr;void* end = nullptr;size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);assert(actualNum > 0);if (actualNum == 1){assert(start == end);return start;}else{_freeLists[index].PushRange(NextObj(start), end);return start;}
}
完善自由链表
//管理切分好的小对象的自由链表
class FreeList
{
public:void Push(void* obj){assert(obj);// 头插//*(void**)obj = _freeList;NextObj(obj) = _freeList;_freeList = obj;}void PushRange(void* start, void* end){NextObj(end) = _freeList;_freeList = start;}void* Pop(){assert(_freeList);// 头删void* obj = _freeList;_freeList = NextObj(obj);return obj;}bool Empty(){return _freeList == nullptr;}size_t& MaxSize(){return _maxSize;}
private:void* _freeList;size_t _maxSize = 1;
};
实现FetchRangobj
// 从中心缓存获取一定数量的对象给thread cache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size)
{size_t index = SizeClass::Index(size);_spanLists[index]._mtx.lock();Span* span = GetOneSpan(_spanLists[index], size);assert(span);assert(span->_freeList);// 从span中获取batchNum个对象// 如果不够batchNum个,有多少拿多少start = span->_freeList;end = start;size_t i = 0;size_t actualNum = 1;while (i < batchNum - 1 && NextObj(end) != nullptr){end = NextObj(end);++i;++actualNum;}span->_freeList = NextObj(end);NextObj(end) = nullptr;span->_useCount += actualNum;_spanLists[index]._mtx.unlock();return actualNum;
}