随机矩阵投影长度保持引理及其证明

原论文中的引理 2 \textbf{2} 2

引理 2 \textbf{2} 2的内容​​

👉前提 1 1 1:设一个随机矩阵 S = ( s i j ) ∈ R t × d S\text{=}(s_{ij})\text{∈}\mathbb{R}^{t\text{×}d} S=(sij)Rt×d,每个元素 s i j s_{ij} sij独立同分布于 N ( 0 , 1 ) N(0,1) N(0,1)

👉前提 2 2 2:对任意固定向量 u ∈ R d × 1 u\text{∈}\mathbb{R}^{d\text{×}1} uRd×1(即 u i j u_{ij} uij不随机),定义 u ′ = 1 t ( S u ) u^{\prime}\text{=}\cfrac{1}{\sqrt{t}}(Su) u=t 1(Su)

👉结论 1 1 1 E [ ∥ u ′ ∥ 2 ] = ∥ u ∥ 2 \mathbb{E}\left[\left\|u^{\prime}\right\|^2\right]\text{=}\|u\|^2 E[u2]=u2,即 ∥ u ′ ∥ 2 \left\|u^{\prime}\right\|^2 u2 ∥ u ∥ 2 \|u\|^2 u2在统计学上是相等的

👉结论 2 2 2 Pr [ ∥ u ′ ∥ 2 ∉ ( 1 ± ε ) ∥ u ∥ 2 ] ≤ 2 e – ( ε 2 – ε 3 ) t 4 \text{Pr}\left[\left\|u^{\prime}\right\|^2\notin(1\text{±}\varepsilon{})\|u\|^2\right]\text{≤}2e^{–\left(\varepsilon{}^2–\varepsilon{}^3\right)\frac{t}{4}} Pr[u2/(1±ε)u2]2e(ε2ε3)4t,即 ∥ u ′ ∥ 2 \left\|u^{\prime}\right\|^2 u2 ∥ u ∥ 2 \|u\|^2 u2在实际值上偏差极小且可控

引理 1 \textbf{1} 1的内容

👉前提: X ∼ N ( 0 , σ ) X\sim{}N(0,\sigma) XN(0,σ) f ( x ) = 1 2 π σ e – x 2 2 σ 2 f(x)\text{=}\cfrac{1}{\sqrt{2\pi}\sigma}e^{–\frac{x^{2}}{2\sigma^{2}}} f(x)=2π σ1e2σ2x2,且 ∀ α < 1 2 σ 2 \forall{}\alpha{}\text{<}\cfrac{1}{2\sigma^{2}} α<2σ21

👉结论: E [ e α X 2 ] = 1 1 – 2 α σ 2 \mathbb{E}\left[e^{\alpha{}X^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}\sigma^{2}}} E[eαX2]=1–2ασ2 1

对结论 1 \textbf{1} 1的证明

➡️对于 s i j ∼ N ( 0 , 1 ) s_{ij}\sim{}N(0,1) sijN(0,1),则有 S ⋅ j u = ∑ i = 1 d s i j u i ∼ N ( 0 , ∥ u ∥ 2 ) \displaystyle{}S_{\cdot{}j}u\text{=}\sum_{i=1}^{d}s_{ij}u_i\sim{}N(0,\|u\|^2) Sju=i=1dsijuiN(0,u2)

  1. 均值 E [ S ⋅ j u ] = E [ ∑ i = 1 d s i j u i ] = ∑ i = 1 d u i E [ s i j ] = 0 \displaystyle{}\mathbb{E}\left[S_{\cdot{}j}u\right]\text{=}\mathbb{E}\left[\sum_{i=1}^ds_{ij}u_i\right]\text{=}\sum_{i=1}^du_i\mathbb{E}\left[s_{ij}\right]\text{=}0 E[Sju]=E[i=1dsijui]=i=1duiE[sij]=0
  2. 方差 Var [ S ⋅ j u ] =Var [ ∑ i = 1 d s i j u i ] = ∑ i = 1 d Var [ s i j u i ] = ∑ i = 1 d u i 2 Var [ s i j ] = ∑ i = 1 d u i 2 = ∥ u ∥ 2 \displaystyle{}\text{Var}\left[S_{\cdot{}j}u\right]\text{=}\text{Var}\left[\sum_{i=1}^ds_{ij}u_i\right]\text{=}\sum_{i=1}^d\text{Var}[s_{ij}u_i]\text{=}\sum_{i=1}^du_i^2\text{Var}[s_{ij}]\text{=}\sum_{i=1}^du_i^2\text{=}\|u\|^2 Var[Sju]=Var[i=1dsijui]=i=1dVar[sijui]=i=1dui2Var[sij]=i=1dui2=u2

➡️正态分布性质 E [ X 2 ] = σ 2 \mathbb{E}[X^2]\text{=}\sigma{}^2 E[X2]=σ2,所以 E [ ( S ⋅ j u ) 2 ] = ∥ u ∥ 2 \mathbb{E}\left[\left(S_{\cdot{}j}u\right)^2\right]\text{=}\|u\|^2 E[(Sju)2]=u2

➡️所以 E [ ∥ S u ∥ 2 ] = E [ ∑ j = 1 t ( S ⋅ j u ) 2 ] = ∑ j = 1 t E [ ( S ⋅ j u ) 2 ] = t ∥ u ∥ 2 \displaystyle{}\mathbb{E}\left[\|Su\|^2\right]\text{=}\mathbb{E}\left[\sum_{j\text{=}1}^t\left(S_{\cdot{}j}u\right)^2\right]\text{=}\sum_{j=1}^t\mathbb{E}\left[\left(S_{\cdot{}j}u\right)^2\right]\text{=}t\|u\|^2 E[Su2]=E[j=1t(Sju)2]=j=1tE[(Sju)2]=tu2

➡️根据 u ′ = 1 t ( S u ) u^{\prime}\text{=}\cfrac{1}{\sqrt{t}}(Su) u=t 1(Su),得到 ∥ u ′ ∥ 2 = 1 t ∥ S u ∥ 2 \left\|u^{\prime}\right\|^2\text{=}\cfrac{1}{t}\|Su\|^2 u2=t1Su2

➡️所以 E [ ∥ u ′ ∥ 2 ] = E [ 1 t ∥ S u ∥ 2 ] = 1 t E [ ∥ S u ∥ 2 ] = 1 t ( t ∥ u ∥ 2 ) = ∥ u ∥ 2 \displaystyle{}\mathbb{E}\left[\left\|u^{\prime}\right\|^2\right]\text{=}\mathbb{E}\left[\cfrac{1}{t}\|Su\|^2\right]\text{=}\cfrac{1}{t}\mathbb{E}\left[\|Su\|^2\right]\text{=}\cfrac{1}{t}\left(t\|u\|^2\right)\text{=}\|u\|^2 E[u2]=E[t1Su2]=t1E[Su2]=t1(tu2)=u2

对结论 2 \textbf{2} 2的证明(正半边)

➡️考虑到 S ⋅ j u ∼ N ( 0 , ∥ u ∥ 2 ) \displaystyle{}S_{\cdot{}j}u\sim{}N(0,\|u\|^2) SjuN(0,u2),故将其归一化为 X j = S ⋅ j u ∥ u ∥ ∼ N ( 0 , 1 ) X_j\text{=}\cfrac{S_{\cdot{}j}u}{\|u\|}\sim{}N(0,1) Xj=uSjuN(0,1)

➡️由此定义 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1tXj2(自由度为 t t t χ 2 \chi^2 χ2分布),由此 ∥ u ′ ∥ 2 = 1 t ∥ S u ∥ 2 = 1 t ∑ j = 1 t ( S ⋅ j u ) 2 = ∥ u ∥ 2 1 t ∑ j = 1 t X j 2 = 1 t ∥ u ∥ 2 X \displaystyle{}\left\|u^{\prime}\right\|^2\text{=}\cfrac{1}{t}\|Su\|^2\text{=}\cfrac{1}{t}\sum_{j=1}^t\left(S_{\cdot{}j}u\right)^2\text{=}\|u\|^2\cfrac{1}{t}\sum_{j=1}^tX_j^2\text{=}\cfrac{1}{t}\|u\|^2X u2=t1Su2=t1j=1t(Sju)2=u2t1j=1tXj2=t1u2X

➡️由此 Pr [ ∥ u ′ ∥ 2 ≥ ( 1 + ε ) ∥ u ∥ 2 ] =Pr [ X ≥ ( 1 + ε ) t ] \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≥}(1\text{+}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right] Pr[u2(1+ε)u2]=Pr[X(1+ε)t]

➡️考虑马可夫不等式的指数形式: Pr [ X ≥ ( 1 + ε ) t ] =Pr [ e α X ≥ e α ( 1 + ε ) t ] ≤ E [ e α X ] e α ( 1 + ε ) t \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{=}\text{Pr}\left[e^{\alpha{}X}\text{≥}e^{\alpha{}(1\text{+}\varepsilon{})t}\right]\text{≤}\cfrac{\mathbb{E}\left[e^{\alpha{}X}\right]}{e^{\alpha{}(1\text{+}\varepsilon{})t}} Pr[X(1+ε)t]=Pr[eαXeα(1+ε)t]eα(1+ε)tE[eαX]

  1. 考虑到 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1tXj2,所以 E [ e α X ] = E [ e α ( X 1 2 + X 2 2 + ⋯ + X t 2 ) ] = E [ e α X 1 2 e α X 2 2 ⋯ e α X t 2 ] = E [ ∏ j = 1 t e α X j 2 ] = ∏ j = 1 t E [ e α X j 2 ] \displaystyle{}\mathbb{E}\left[e^{\alpha{}X}\right]\text{=}\mathbb{E}\left[e^{\alpha{}(X^2_1\text{+}X^2_2\text{+}\cdots\text{+}X^2_t)}\right]\text{=}\mathbb{E}\left[e^{\alpha{}X^2_1}e^{\alpha{}X^2_2}\cdots{}e^{\alpha{}X^2_t}\right]\text{=}\mathbb{E}\left[\prod_{j=1}^te^{\alpha{}X^2_j}\right]\text{=}\prod_{j=1}^t\mathbb{E}\left[e^{\alpha{}X_j^2}\right] E[eαX]=E[eα(X12+X22++Xt2)]=E[eαX12eαX22eαXt2]=E[j=1teαXj2]=j=1tE[eαXj2]
  2. 在引理 1 1 1中已经证明 E [ e α X j 2 ] = 1 1 – 2 α σ 2 ( α < 1 2 σ 2 ) \mathbb{E}\left[e^{\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}\sigma^{2}}}(\alpha{}\text{<}\cfrac{1}{2\sigma^{2}}) E[eαXj2]=1–2ασ2 1(α<2σ21),考虑到此处 σ ( X j ) = 1 \sigma({X_j})\text{=}1 σ(Xj)=1所以 E [ e α X j 2 ] = 1 1 – 2 α ( α < 1 2 ) \mathbb{E}\left[e^{\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1–2\alpha{}}}(\alpha{}\text{<}\cfrac{1}{2}) E[eαXj2]=1–2α 1(α<21)
  3. 所以 E [ e α X ] = ∏ j = 1 t ( 1 1 – 2 α ) = ( 1 1 – 2 α ) t = 1 ( 1 – 2 α ) t 2 \displaystyle{}\mathbb{E}\left[e^{\alpha{}X}\right]\text{=}\prod_{j=1}^t\left(\cfrac{1}{\sqrt{1–2\alpha{}}}\right)\text{=}\left(\cfrac{1}{\sqrt{1–2\alpha{}}}\right)^t\text{=}\cfrac{1}{(1–2\alpha)^{\frac{t}{2}}} E[eαX]=j=1t(1–2α 1)=(1–2α 1)t=(1–2α)2t1
  4. 代入原式得 Pr [ X ≥ ( 1 + ε ) t ] ≤ E [ e α X ] e α ( 1 + ε ) t = ( 1 – 2 α ) – t 2 e α ( 1 + ε ) t = ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\cfrac{\mathbb{E}\left[e^{\alpha{}X}\right]}{e^{\alpha{}(1\text{+}\varepsilon{})t}}\text{=}\cfrac{{(1–2\alpha)^{–\frac{t}{2}}}}{e^{\alpha{}(1\text{+}\varepsilon{})t}}\text{=}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}} Pr[X(1+ε)t]eα(1+ε)tE[eαX]=eα(1+ε)t(1–2α)2t=(1–2αe–2(1+ε)α)2t

➡️对于 Pr [ X ≥ ( 1 + ε ) t ] ≤ ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}} Pr[X(1+ε)t](1–2αe–2(1+ε)α)2t,有必要在 0 < α < 1 2 0\text{<}\alpha{}\text{<}\cfrac{1}{2} 0<α<21的范围内确定 f ( α ) = ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 f(\alpha)\text{=}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}} f(α)=(1–2αe–2(1+ε)α)2t的最小值

  1. 对于 ln ⁡ ( f ( α ) ) = t 2 [ – 2 ( 1 + ε ) α – ln ⁡ ( 1 – 2 α ) ] \ln(f(\alpha))\text{=}\cfrac{t}{2}[–2(1\text{+}\varepsilon)\alpha–\ln(1–2\alpha)] ln(f(α))=2t[–2(1+ε)αln(1–2α)],令 g ( α ) =– 2 ( 1 + ε ) α – ln ⁡ ( 1 – 2 α ) g(\alpha)\text{=}–2(1\text{+}\varepsilon)\alpha–\ln(1–2\alpha) g(α)=–2(1+ε)αln(1–2α),如下图( ε = 3 \varepsilon\text{=}3 ε=3)
    image-20250123232509535
  2. 一阶导 d g ( α ) d α = 2 1 – 2 α – 2 ( 1 + ε ) \cfrac{\text{d}g{(\alpha)}}{\text{d}\alpha}\text{=}\cfrac{2}{1–2\alpha}–2(1\text{+}\varepsilon) dαdg(α)=1–2α2–2(1+ε),具有临界点 α ∗ = ε 2 ( 1 + ε ) ∈ ( 0 , 1 2 ) \alpha^*\text{=}\cfrac{\varepsilon}{2(1\text{+}\varepsilon)}\text{∈}\left(0,\cfrac{1}{2}\right) α=2(1+ε)ε(0,21),故 ε > 0 \varepsilon\text{>}0 ε>0
  3. 代入原式即得 Pr [ X ≥ ( 1 + ε ) t ] ≤ ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 ≤ ( ( 1 + ε ) e – ε ) t 2 \text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1\text{+}\varepsilon) e^{–\varepsilon}\right)^{\frac{t}{2}} Pr[X(1+ε)t](1–2αe–2(1+ε)α)2t((1+ε)eε)2t

➡️进一步对 h ( ε ) = ( ( 1 + ε ) e – ε ) t 2 h(\varepsilon)\text{=}\left((1\text{+}\varepsilon)e^{–\varepsilon}\right)^{\frac{t}{2}} h(ε)=((1+ε)eε)2t的分析

  1. 泰勒展开 ln ⁡ ( 1 + ε ) = ε – ε 2 2 + ε 3 3 + O ( ε 4 ) \ln{}(1\text{+}\varepsilon)\text{=}\varepsilon–\cfrac{\varepsilon^2}{2}\text{+}\cfrac{\varepsilon^3}{3}\text{+}O\left(\varepsilon^4\right) ln(1+ε)=ε2ε2+3ε3+O(ε4),则 ln ⁡ ( 1 + ε ) – ε ≤– ε 2 2 + ε 3 3 ≤– 1 2 ( ε 2 – ε 3 ) \ln(1\text{+}\varepsilon)–\varepsilon\text{≤}–\cfrac{\varepsilon^2}{2}\text{+}\cfrac{\varepsilon^3}{3}\text{≤}–\cfrac{1}{2}\left(\varepsilon^2–\varepsilon^3\right) ln(1+ε)ε2ε2+3ε321(ε2ε3)
  2. 故在 ln ⁡ ( h ( ε ) ) = t 2 ( ln ⁡ ( 1 + ε ) – ε ) ≤– t 4 ( ε 2 – ε 3 ) \ln(h(\varepsilon))\text{=}\cfrac{t}{2}(\ln(1\text{+}\varepsilon)–\varepsilon)\text{≤}–\cfrac{t}{4}\left(\varepsilon^2–\varepsilon^3\right) ln(h(ε))=2t(ln(1+ε)ε)4t(ε2ε3),即 h ( ε ) ≤ e – t 4 ( ε 2 – ε 3 ) h(\varepsilon)\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} h(ε)e4t(ε2ε3)

➡️最后 Pr [ ∥ u ′ ∥ 2 ≥ ( 1 + ε ) ∥ u ∥ 2 ] =Pr [ X ≥ ( 1 + ε ) t ] ≤ ( e – 2 ( 1 + ε ) α 1 – 2 α ) t 2 ≤ ( ( 1 + ε ) e – ε ) t 2 ≤ e – t 4 ( ε 2 – ε 3 ) \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≥}(1\text{+}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[X\text{≥}(1\text{+}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{–2(1\text{+}\varepsilon)\alpha}}{1–2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1\text{+}\varepsilon) e^{–\varepsilon}\right)^{\frac{t}{2}}\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} Pr[u2(1+ε)u2]=Pr[X(1+ε)t](1–2αe–2(1+ε)α)2t((1+ε)eε)2te4t(ε2ε3)

对结论 2 2 2的证明(负半边)

➡️考虑到 S ⋅ j u ∼ N ( 0 , ∥ u ∥ 2 ) \displaystyle{}S_{\cdot{}j}u\sim{}N(0,\|u\|^2) SjuN(0,u2),故将其归一化为 X j = S ⋅ j u ∥ u ∥ ∼ N ( 0 , 1 ) X_j\text{=}\cfrac{S_{\cdot{}j}u}{\|u\|}\sim{}N(0,1) Xj=uSjuN(0,1)

➡️由此定义 X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1tXj2(自由度为 t t t χ 2 \chi^2 χ2分布),由此 ∥ u ′ ∥ 2 = 1 t ∥ S u ∥ 2 = 1 t ∑ j = 1 t ( S ⋅ j u ) 2 = ∥ u ∥ 2 1 t ∑ j = 1 t X j 2 = 1 t ∥ u ∥ 2 X \displaystyle{}\left\|u^{\prime}\right\|^2\text{=}\cfrac{1}{t}\|Su\|^2\text{=}\cfrac{1}{t}\sum_{j=1}^t\left(S_{\cdot{}j}u\right)^2\text{=}\|u\|^2\cfrac{1}{t}\sum_{j=1}^tX_j^2\text{=}\cfrac{1}{t}\|u\|^2X u2=t1Su2=t1j=1t(Sju)2=u2t1j=1tXj2=t1u2X

➡️由此 Pr [ ∥ u ′ ∥ 2 ≤ ( 1 – ε ) ∥ u ∥ 2 ] =Pr [ X ≤ ( 1 – ε ) t ] =Pr [ – X ≥– ( 1 – ε ) t ] \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≤}(1\text{–}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[X\text{≤}(1\text{–}\varepsilon{})t\right]\text{=}\text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right] Pr[u2(1ε)u2]=Pr[X(1ε)t]=Pr[X(1ε)t]

➡️考虑马可夫不等式的指数形式: Pr [ – X ≥– ( 1 – ε ) t ] =Pr [ e α ( – X ) ≥ e – α ( 1 – ε ) t ] ≤ E [ e – α X ] e – α ( 1 – ε ) t \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{=}\text{Pr}\left[e^{\alpha{}(–X)}\text{≥}e^{–\alpha{}(1\text{–}\varepsilon{})t}\right]\text{≤}\cfrac{\mathbb{E}\left[e^{–\alpha{}X}\right]}{e^{–\alpha{}(1\text{–}\varepsilon{})t}} Pr[X(1ε)t]=Pr[eα(X)eα(1ε)t]eα(1ε)tE[eαX]

  1. X = ∑ j = 1 t X j 2 \displaystyle{}X\text{=}\sum_{j=1}^tX_j^2 X=j=1tXj2,所以 E [ e – α X ] = E [ e – α ( X 1 2 + X 2 2 + ⋯ + X t 2 ) ] = E [ e – α X 1 2 e – α X 2 2 ⋯ e – α X t 2 ] = E [ ∏ j = 1 t e – α X j 2 ] = ∏ j = 1 t E [ e – α X j 2 ] \displaystyle{}\mathbb{E}\left[e^{–\alpha{}X}\right]\text{=}\mathbb{E}\left[e^{–\alpha{}(X^2_1\text{+}X^2_2\text{+}\cdots\text{+}X^2_t)}\right]\text{=}\mathbb{E}\left[e^{–\alpha{}X^2_1}e^{–\alpha{}X^2_2}\cdots{}e^{–\alpha{}X^2_t}\right]\text{=}\mathbb{E}\left[\prod_{j=1}^te^{–\alpha{}X_j^2}\right]\text{=}\prod_{j=1}^t\mathbb{E}\left[e^{–\alpha{}X_j^2}\right] E[eαX]=E[eα(X12+X22++Xt2)]=E[eαX12eαX22eαXt2]=E[j=1teαXj2]=j=1tE[eαXj2]
  2. 在引理 1 1 1中已经证明 E [ e – α X j 2 ] = 1 1 + 2 α σ 2 ( α >– 1 2 σ 2 ) \mathbb{E}\left[e^{–\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1\text{+}2\alpha{}\sigma^{2}}}(\alpha{}\text{>}–\cfrac{1}{2\sigma^{2}}) E[eαXj2]=1+2ασ2 1(α>2σ21),考虑到此处 σ ( X j ) = 1 \sigma({X_j})\text{=}1 σ(Xj)=1所以 E [ e – α X j 2 ] = 1 1 + 2 α ( α >– 1 2 ) \mathbb{E}\left[e^{–\alpha{}X_j^{2}}\right]\text{=}\cfrac{1}{\sqrt{1\text{+}2\alpha{}}}(\alpha{}\text{>}–\cfrac{1}{2}) E[eαXj2]=1+2α 1(α>21)
  3. 所以 E [ e – α X ] = ∏ j = 1 t ( 1 1 + 2 α ) = ( 1 1 + 2 α ) t = 1 ( 1 + 2 α ) t 2 \displaystyle{}\mathbb{E}\left[e^{–\alpha{}X}\right]\text{=}\prod_{j=1}^t\left(\cfrac{1}{\sqrt{1\text{+}2\alpha{}}}\right)\text{=}\left(\cfrac{1}{\sqrt{1\text{+}2\alpha{}}}\right)^t\text{=}\cfrac{1}{(1\text{+}2\alpha)^{\frac{t}{2}}} E[eαX]=j=1t(1+2α 1)=(1+2α 1)t=(1+2α)2t1
  4. 代入原式得 Pr [ – X ≥– ( 1 – ε ) t ] ≤ E [ e – α X ] e – α ( 1 – ε ) t = ( 1 + 2 α ) – t 2 e – α ( 1 – ε ) t = ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\cfrac{\mathbb{E}\left[e^{–\alpha{}X}\right]}{e^{–\alpha{}(1–\varepsilon{})t}}\text{=}\cfrac{{(1\text{+}2\alpha)^{–\frac{t}{2}}}}{e^{–\alpha{}(1–\varepsilon{})t}}\text{=}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}} Pr[X(1ε)t]eα(1–ε)tE[eαX]=eα(1–ε)t(1+2α)2t=(1+2αe2(1–ε)α)2t

➡️对于 Pr [ – X ≥– ( 1 – ε ) t ] ≤ ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}} Pr[X(1ε)t](1+2αe2(1–ε)α)2t,有必要在 α >– 1 2 \alpha{}\text{>}–\cfrac{1}{2} α>21的范围内确定 f ( α ) = ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 f(\alpha)\text{=}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}} f(α)=(1+2αe2(1–ε)α)2t的最小值

  1. 对于 ln ⁡ ( f ( α ) ) = t 2 [ 2 ( 1 – ε ) α – ln ⁡ ( 1 + 2 α ) ] \ln(f(\alpha))\text{=}\cfrac{t}{2}[2(1–\varepsilon)\alpha–\ln(1\text{+}2\alpha)] ln(f(α))=2t[2(1–ε)αln(1+2α)],令 g ( α ) = [ 2 ( 1 – ε ) α – ln ⁡ ( 1 + 2 α ) ] g(\alpha)\text{=}[2(1–\varepsilon)\alpha–\ln(1\text{+}2\alpha)] g(α)=[2(1–ε)αln(1+2α)],如下图( ε =– 1 3 \varepsilon\text{=}–\cfrac{1}{3} ε=31)
    image-20250123232509535
  2. 一阶导 d g ( α ) d α =– 2 1 + 2 α + 2 ( 1 + ε ) \cfrac{\text{d}g{(\alpha)}}{\text{d}\alpha}\text{=}–\cfrac{2}{1\text{+}2\alpha}\text{+}2(1\text{+}\varepsilon) dαdg(α)=1+2α2+2(1+ε),具有临界点 α ∗ = ε 2 ( 1 – ε ) ∈ ( – 1 2 , +∞ ) \alpha^*\text{=}\cfrac{\varepsilon}{2(1–\varepsilon)}\text{∈}\left(–\cfrac{1}{2},\text{+∞}\right) α=2(1–ε)ε(21,+∞),故 – 1 < ε < 1 –1\text{<}\varepsilon\text{<}1 –1<ε<1(由于前提限制故截取为 0 < ε < 1 0\text{<}\varepsilon\text{<}1 0<ε<1)
  3. 代入原式即得 Pr [ – X ≥– ( 1 – ε ) t ] ≤ ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 ≤ ( ( 1 – ε ) e ε ) t 2 \text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1–\varepsilon) e^{\varepsilon}\right)^{\frac{t}{2}} Pr[X(1ε)t](1+2αe2(1–ε)α)2t((1–ε)eε)2t

➡️进一步对 h ( ε ) = ( ( 1 – ε ) e ε ) t 2 h(\varepsilon)\text{=}\left((1–\varepsilon) e^{\varepsilon}\right)^{\frac{t}{2}} h(ε)=((1–ε)eε)2t的分析

  1. 泰勒展开 ln ⁡ ( 1 – ε ) =– ε – ε 2 2 – ε 3 3 + O ( ε 4 ) \ln{}(1–\varepsilon)\text{=}–\varepsilon–\cfrac{\varepsilon^2}{2}–\cfrac{\varepsilon^3}{3}\text{+}O\left(\varepsilon^4\right) ln(1–ε)=ε2ε23ε3+O(ε4),则 ln ⁡ ( 1 – ε ) + ε ≤– ε 2 2 – ε 3 3 ≤– 1 2 ( ε 2 – ε 3 ) \ln(1–\varepsilon)\text{+}\varepsilon\text{≤}–\cfrac{\varepsilon^2}{2}–\cfrac{\varepsilon^3}{3}\text{≤}–\cfrac{1}{2}\left(\varepsilon^2–\varepsilon^3\right) ln(1–ε)+ε2ε23ε321(ε2ε3)
  2. 故在 ln ⁡ ( h ( ε ) ) = t 2 ( ln ⁡ ( 1 – ε ) + ε ) ≤– t 4 ( ε 2 – ε 3 ) \ln(h(\varepsilon))\text{=}\cfrac{t}{2}(\ln(1–\varepsilon)\text{+}\varepsilon)\text{≤}–\cfrac{t}{4}\left(\varepsilon^2–\varepsilon^3\right) ln(h(ε))=2t(ln(1–ε)+ε)4t(ε2ε3),即 h ( ε ) ≤ e – t 4 ( ε 2 – ε 3 ) h(\varepsilon)\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} h(ε)e4t(ε2ε3)

➡️最后 Pr [ ∥ u ′ ∥ 2 ≤ ( 1 – ε ) ∥ u ∥ 2 ] =Pr [ – X ≥– ( 1 – ε ) t ] ≤ ( e 2 ( 1 – ε ) α 1 + 2 α ) t 2 ≤ ( ( 1 – ε ) e ε ) t 2 ≤ e – t 4 ( ε 2 – ε 3 ) \text{Pr}\left[\left\|u^{\prime}\right\|^2\text{≤}(1\text{–}\varepsilon)\|u\|^2\right]\text{=}\text{Pr}\left[–X\text{≥}–(1\text{–}\varepsilon{})t\right]\text{≤}\left(\cfrac{e^{2(1–\varepsilon)\alpha}}{1\text{+}2\alpha}\right)^{\frac{t}{2}}\text{≤}\left((1–\varepsilon) e^{\varepsilon}\right)^{\frac{t}{2}}\text{≤}e^{–\frac{t}{4}\left(\varepsilon^2–\varepsilon^3\right)} Pr[u2(1ε)u2]=Pr[X(1ε)t](1+2αe2(1–ε)α)2t((1–ε)eε)2te4t(ε2ε3)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10240.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CF 761A.Dasha and Stairs(Java实现)

题目分析 大概意思是输入偶数值奇数值&#xff0c;判断是否能够凑成一连串数字 思路分析 能够连成一串数字的条件考虑&#xff1a;1.偶数与奇数差为1&#xff1b;2.偶数与奇数相等&#xff0c;且不为0 代码 import java.util.*;public class Main {public static void…

FastExcel使用详解

文章目录 FastExcel使用详解一、引言二、环境准备与依赖引入1、Maven 依赖引入2、实体类定义 三、核心操作&#xff1a;读写 Excel1、读取 Excel1.1 自定义监听器1.2 读取文件 2、写入 Excel2.1 简单写入2.2 模板写入 四、Spring Boot 集成示例1、文件上传&#xff08;导入&…

zabbix7 配置字体 解决中文乱码问题(随手记)

目录 问题网传的方法&#xff08;无效&#xff09;正确的修改方式步骤 问题 zabbix 最新数据 中&#xff0c;图标的中文显示不出。 网传的方法&#xff08;无效&#xff09; 网传有一个方法&#xff1a;上传字体文件到/usr/share/zabbix/assets/fonts&#xff1b;修改/usr/…

我的求职面经:(1)C++里指针和数组的区别

经典问题&#xff1a; char s1[]"hello"; char *s2"hello"; 1、s1的值是放在栈上的&#xff0c;值是可以修改的&#xff0c;而hello是一个字符串常量放在静态存储区是不能修改的。 2、内存大小不一样 #include<stdio.h>int main(){char s1[]&quo…

01. 计算机系统

计算机系统简单概述 计算机系统是一个综合性的系统&#xff0c;旨在按人的要求接收和存储信息&#xff0c;自动进行数据处理和计算&#xff0c;并输出结果信息。以下是关于计算机系统的详细介绍&#xff1a; 一、定义与组成 计算机系统是由硬件和软件组成的&#xff0c;用于执…

Git进阶之旅:.gitignore 文件

介绍&#xff1a; 在项目中&#xff0c;我们可能一起提交多个文件 git add -A&#xff1a;提交所有变化git add -u&#xff1a;提交被修改(modified) 和被删除文件(deleted) 文件&#xff0c;不包括新文件(new) git add .&#xff1a;提交新文件(new) 和被修改文件(modif…

指针(C语言)从0到1掌握指针,为后续学习c++打下基础

目录 一&#xff0c;指针 二&#xff0c;内存地址和指针 1&#xff0c;什么是内存地址 2&#xff0c;指针在不同系统下所占内存 三&#xff0c;指针的声明和初始化以及类型 1,指针的声明 2,指针 的初始化 1&#xff0c; 初始化方式优点及适用场景 4,指针的声明初始化类型…

Leetcode 45. 跳跃游戏 II

这题是一个动态规划问题&#xff0c;首先我先说一下自己的动态规划解题步骤&#xff1a; 1&#xff0c;首先需要明确动态规划数组的含义&#xff1a;这个是根据题目来定的&#xff0c;这一个题目的数组含义&#xff1a;dp【i】指的是从0跳到i所需要的最小的步骤。 2&#xff…

【Block总结】PConv,部分卷积|即插即用

论文信息 标题: Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks 论文链接: https://arxiv.org/pdf/2303.03667 GitHub链接: https://github.com/JierunChen/FasterNet 创新点 该论文的核心创新在于提出了一种新的运算符——部分卷积&#xff08;PCo…

Maven的单元测试

1. 单元测试的基本概念 单元测试&#xff08;Unit Testing&#xff09; 是一种软件测试方法&#xff0c;专注于测试程序中的最小可测试单元——通常是单个类或方法。通过单元测试&#xff0c;可以确保每个模块按预期工作&#xff0c;从而提高代码的质量和可靠性。 2.安装和配…

【漫话机器学习系列】069.哈达马乘积(Hadamard Product)

哈达马乘积&#xff08;Hadamard Product&#xff09; 哈达马乘积&#xff08;Hadamard Product&#xff09;是两个矩阵之间的一种元素级操作&#xff0c;也称为逐元素乘积&#xff08;Element-wise Product&#xff09;。它以矩阵的对应元素相乘为规则&#xff0c;生成一个新…

【设计测试用例自动化测试性能测试 实战篇】

&#x1f308;个人主页&#xff1a;努力学编程’ ⛅个人推荐&#xff1a; c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构&#xff0c;刷题刻不容缓&#xff1a;点击一起刷题 &#x1f319;心灵鸡汤&#xff1a;总有人要赢&#xff0c;为什么不能是我呢 设计测试用例…

AJAX综合案例——图书管理

黑马程序员视频地址&#xff1a; AJAX-Day02-10.案例_图书管理AJAX-Day02-10.案例_图书管理_总结_V1.0是黑马程序员前端AJAX入门到实战全套教程&#xff0c;包含学前端框架必会的&#xff08;ajaxnode.jswebpackgit&#xff09;&#xff0c;一套全覆盖的第25集视频&#xff0c…

5.3.2 软件设计原则

文章目录 抽象模块化信息隐蔽与独立性衡量 软件设计原则&#xff1a;抽象、模块化、信息隐蔽。 抽象 抽象是抽出事物本质的共同特性。过程抽象是指将一个明确定义功能的操作当作单个实体看待。数据抽象是对数据的类型、操作、取值范围进行定义&#xff0c;然后通过这些操作对数…

Jason配置环境变量

jason官网 https://jason-lang.github.io/ https://github.com/jason-lang/jason/releases 步骤 安装 Java 21 或更高版本 安装 Visual Studio Code 根据操作系统&#xff0c;请按照以下具体步骤操作 视窗 下载 Jason 的最新版本&#xff0c;选择“jason-bin-3.3.0.zip”…

关于bash内建echo输出多行文本

echo命令 使用下述命令可以判断当前使用的echo命令是内建命令还是外部命令 type echo有下述输出&#xff0c;说明是内建命令 bash的内建命令输出多行文本时会拆分多次写入 如果希望不拆分多次写入&#xff0c;可以借用tee工具 tee工具可以将命令的输出同时发送到终端和文件…

消息队列篇--通信协议篇--TCP和UDP(3次握手和4次挥手,与Socket和webSocket的概念区别等)

1、TCP和UDP概述 TCP&#xff08;传输控制协议&#xff0c;Transmission Control Protocol&#xff09;和UDP&#xff08;用户数据报协议&#xff0c;User Datagram Protocol&#xff09;都算是最底层的通信协议&#xff0c;它们位于OSI模型的传输层。*传输层的主要职责是确保…

unity学习22:Application类其他功能

目录 1 是否允许后台运行 1.1 Application.runInBackground&#xff0c;显示是否允许后台运行 1.2 设置的地方 2 打开URL 2.1 Application.OpenURL("") 打开超链接 3 退出游戏 3.1 Application.Quit() 退出游戏 4 场景相关 5 返回游戏状态 6 控制游戏的行…

deepseek R1 14b显存占用

RTX2080ti 11G显卡&#xff0c;模型7b速度挺快&#xff0c;试试14B也不错。 7B显存使用5.6G&#xff0c;14B显存刚好够&#xff0c;出文字速度差不多。 打算自己写个移动宽带的IPTV播放器&#xff0c;不知道怎么下手&#xff0c;就先问他了。

.NET Core缓存

目录 缓存的概念 客户端响应缓存 cache-control 服务器端响应缓存 内存缓存&#xff08;In-memory cache&#xff09; 用法 GetOrCreateAsync 缓存过期时间策略 缓存的过期时间 解决方法&#xff1a; 两种过期时间策略&#xff1a; 绝对过期时间 滑动过期时间 两…