[Linux]进程概念

[Linux]进程概念

文章目录

  • [Linux]进程概念
    • 进程的定义
    • 进程和程序的关系
    • Linux下查看进程
    • Linux下通过系统调用获取进程标示符
    • Linux下通过系统调用创建进程-fork函数使用

进程的定义

进程是程序的一个执行实例,是担当分配系统资源(CPU时间,内存)的实体。

进程和程序的关系

由编程语言编写的代码经过编译后形成的二进制程序会存储在硬盘中,当计算机启动一个程序时,会将程序的相关代码和和数据加载到内存中,供CPU来使用:

image-20230803184610548

程序的代码和数据加载到内存后,操作系统就要对程序进行管理,为了更好的管理这些程序,需要对先创建相应的结构来描述这些程序,在操作系统中,用于描述程序的结构叫做进程控制块(Process Control Block,简称 PCB),Linux系统下的PCB名为task_struct,PCB中也会记录相应的代码和数据的地址,为了更好的访问这些PCB使用链式结构将其组织起来:

image-20230803185254037

task_ struct内容分类如下:

  • 标示符: 描述本进程的唯一标示符,用来区别其他进程。
  • 状态: 任务状态,退出代码,退出信号等。
  • 优先级: 相对于其他进程的优先级。
  • 程序计数器: 程序中即将被执行的下一条指令的地址。
  • 内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针
  • 上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。
  • I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。
  • 记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。
  • 其他信息。

如果只是将程序的代码和数据加载到内存中,但是操作系统没有为其创建PCB进行管理,操作系统就不会调度它,它就无法完成程序的执行,因此进程的本质是内存中的代码和数据+进程控制块,有了PCB后,操作系统就将对进程的管理转化为了对PCB的管理,比如如果要关闭一个进程就将其PCB删除,然后对应的内存就会清空其在内存中的代码和数据:

image-20230803190524985

Linux下查看进程

为了更好的在Linux操作系统上查看进程,创建源文件myprocess.c和makefile文件来创建二进制程序,

源文件中内容如下:

#include <stdio.h>
#include <unistd.h>int main()
{while(1){printf("hello myprocess\n");sleep(1);}return 0;
}

其中makefile的内容如下:

myprocess:myprocess.cgcc -o myprocess myprocess.c
.PHONY:clean
clean:rm -f myprocess

创建好以上文件并编译得到名为myprocess的二进制程序,然后在Linux下启动两个客户端,其中一个启动程序变成进程:

image-20230803193450976

再另一个客户端输入ps axj | head -1 && ps axj | grep myprocess | grep -v grep查看myprocess进程:

image-20230803193707725

以上为使用指令查看进程,指令如下:

ps axj | head -1 && ps axj | grep 进程名 | grep -v 进程名

另外还可以在/proc目录下看到进程:

image-20230803193931708

/proc目录是一个内存级的目录,不存在于硬盘中,目录中会有命名和pid相同的目录,该目录中会记录对应进程的task_struct,如果进程关闭了对应的目录也就删除了。

Linux下通过系统调用获取进程标示符

Linux操作系统为了唯一标识一个进程,给每个进程设置了一个进程标识符在PCB中,也就是pid。并且也提供了系统接口函数getpid来获取当前进程的pid,其介绍如下:

image-20230803195336806

为了测试getpid函数修改源文件myprocess.c,内容如下:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>int main()
{while(1){printf("hello myprocess, 我的pid是%d\n", getpid());sleep(1);}return 0;
}

用指令查询进程pid和查看进程执行结果:

image-20230803195628555

另外Linux操作系统中还设置了父进程标识符,用于记录当前进程的父进程pid,也就是ppid,同时也提供了getppid函数来获取当前进程的ppid,ppid的介绍如下:

image-20230803200016344

为了测试getppid函数修改源文件myprocess.c,内容如下:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>int main()
{while(1){printf("hello myprocess, 我的pid是%d, 我的ppid为%d\n", getpid(), getppid());sleep(1);}return 0;
}

用指令查询进程pid和查看进程执行结果:

image-20230803201344196

多次利用 ctrl+c关闭进程,然后重新启动进程:

image-20230803201448298

可以看出,无论进程的pid如何变化,进程的ppid都不会变化,我们尝试用指令查看这个父进程:

image-20230803201620342

实际上这个这个父进程就是bash,通过如上现象我们可以得到如下结论:

  • 命令行解释器(bash)本质也是一个进程。
  • 命令行启动的所有程序最终都会变成进程,而该进程对应的父进程都是bash。

Linux下通过系统调用创建进程-fork函数使用

fork函数是Linux系统提供的创建子进程的系统调用。

  • fork函数运行成功后,执行流会变成两个,一个是调用fork函数的父进程,另一个是fork函数创建的子进程。
  • 创建的子进程会和父进程共享父进程代码和数据,子进程会执行父进程fork函数创建子进程之后的代码。
  • fork函数给父进程返回子进程的pid,给创建的子进程返回0,出错返回-1。

为了测试fork函数修改源文件myprocess.c,内容如下:

#include <stdio.h>
#include <assert.h>
#include <unistd.h>int main()
{pid_t id = fork();if (id == 0){//子进程printf("我是子进程,我的pid是%d, 我的ppid是%d\n", getpid(), getppid());sleep(2);}else if (id > 0){//父进程printf("我是父进程,我的pid是%d, 我的ppid是%d\n", getpid(), getppid());sleep(3);}else {//fork函数出错assert(1);}return 0;
}

说明:

  • fork函数所需要的头文件是unistd.h
  • 使用条件判断来控制父子进程执行不同的代码。

用指令查询进程和查看进程执行结果:

image-20230804105943957

fork函数的原理

进程的本质是PCB+内存中的代码和数据,由于fork函数创建的子进程是和父进程共享代码和数据的,因此fork函数创建子进程的原理是创建一个PCB给子进程,该PCB中大部分数据是和父进程相同的,并且指向同一份代码和数据:

image-20230804113115080

进程独立性在fork中的体现

首先给出如下定理:进程之间是相互独立的,一个进程的任何操作都不会影响其他进程。

在使用fork函数创建子进程进程之间的独立性也能得到保证,为了验证独立性修改源文件myprocess.c,内容如下:

#include <stdio.h>
#include <assert.h>
#include <unistd.h>int main()
{pid_t id = fork();if (id == 0){//子进程printf("我是子进程,我的pid是%d, 我的ppid是%d\n", getpid(), getppid());sleep(20);printf("我是子进程,我的pid是%d, 我的ppid是%d\n", getpid(), getppid());printf("我是子进程,我已经关闭了\n");}else if (id > 0){//父进程printf("我是父进程,我的pid是%d, 我的ppid是%d\n", getpid(), getppid());sleep(3);printf("我是父进程,我已经关闭了\n");}else {//fork函数出错assert(1);}return 0;
}

用指令查询进程和查看进程执行结果:

开始时,父子进程一起执行:

image-20230804114253740

父进程关闭,子进程正常运行:

image-20230804114347222

最后子进程关闭:

image-20230804114411668

由以上测试可以看出,父进程的关闭不影响子进程正常执行,保证了一定的独立性。另外由于代码是只读的,父进程无法通过修改代码来影响子进程,而数据的修改会触发写时拷贝机制,保证了一定的独立性。

为了观察写时拷贝现象,修改源文件myprocess.c,内容如下:

#include <stdio.h>
#include <assert.h>
#include <unistd.h>int main()
{int a = 0;pid_t id = fork();if (id == 0){//子进程printf("我是子进程,我的pid是%d, 我的ppid是%d, a:%d, &a:%p\n", getpid(), getppid(), a, &a);sleep(5);printf("我是子进程,我的pid是%d, 我的ppid是%d, a:%d, &a:%p\n", getpid(), getppid(), a, &a);}else if (id > 0){//父进程printf("我是父进程,我的pid是%d, 我的ppid是%d, a:%d, &a:%p\n", getpid(), getppid(), a, &a);a = 666;printf("我是父进程,我的pid是%d, 我的ppid是%d, a:%d, &a:%p\n", getpid(), getppid(), a, &a);sleep(3);printf("我是父进程,我已经关闭\n");}else {//fork函数出错assert(1);}return 0;
}

查看进程执行结果:

image-20230804120919703

观察现象可以发现,父进程修改a的值后,子进程的a的值并没有改变,但是父进程和子进程的a变量的地址是相同,这就是发生了写时拷贝造成的现象。

fork函数返回两个返回值的原理

由于fork创建的子进程和父进程共享代码和数据,并且fork函数也是父进程的代码的一部分,因此父进程完成子进程的创建后,子进程也会执行fork函数创建子进程后续的剩余代码,其中就包括fork函数中return返回的部分,因此父进程执行了return部分,子进程也执行了return部分,造成fork函数返回两个返回值的现象:

image-20230804121340511

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102714.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Pandas KeyError: “None of [Index([...])] are in the [columns]“问题

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

c++都补了c语言哪些坑?

目录 1.命名空间 1.1 定义 1.2 使用 2.缺省参数 2.1 概念 2.2 分类 3.函数重载 4.引用 4.1 概念 4.2 特性 4.3 常引用 4.4 引用和指针的区别 5.内联函数 1.命名空间 在 C/C 中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将…

windows下redis设置redis开机自启动方法(保姆级)

1.找到Redis所在的目录&#xff0c;在文件路径框中输入cmd: 2.进入到控制台下的Redis所在目录,输入下列命令: redis-server --service-install redis.windows-service.conf --loglevel verbose 3.找到redis.windows-service.conf文件,双击打开设置redis服务的密码: (不想设置密…

使用 Nacos 作为 Spring Boot 配置中心

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

【图像分类】基于卷积神经网络和主动学习的高光谱图像分类(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Ubuntu20.04搭建OpenGL环境(glfw+glad)

Ubuntu20.04搭建OpenGL环境(glfwglad) Linux环境搭建 本文在VMware安装Ubuntu20.04桌面版的环境下搭建OpenGL&#xff0c;按照本文搭建完成后可以执行LearnOpenGL网站上的demo。 关于VMware可自行到VMware Workstation Pro | CN下载 关于Ubuntu20.04桌面版可自行到官网或In…

k8s简介、虚拟机快速搭建k8s集群、集群管理方式及K8S工作原理和组件介绍

文章目录 1、k8s简介1.1、部署方式的变迁1.2、定义1.3、Kubernetes提供的功能 2、虚拟机快速搭建k8s集群2.1、虚拟机配置&#xff08;centos7 2G内存2个处理器&#xff09;2.2、基础环境准备2.3、docker安装&#xff08;易踩坑&#xff09;2.4、安装k8s组件2.5、master节点部署…

Python搭建http文件服务器实现手机电脑文件传输功能

第一种代码的界面如下&#xff1a;&#xff08;有缺点&#xff0c;中文乱码&#xff09; # !/usr/bin/env python3 # -*- coding:utf-8 _*-"""Simple HTTP Server With Upload. python -V3.6 This module builds on http.server by implementing the standard G…

版本控制工具Git集成IDEA的学习笔记(第一篇Gitee)

目录 一、Gitee的使用 1、注册网站会员 2、用户中心 3、创建远程仓库 4、配置SSH免密登录 二、集成IDEA&#xff0c;Git项目搭建 1、本地仓库搭建 1&#xff09;创建一个新项目 2&#xff09;打开终端&#xff0c;在当前目录新建一个Git代码库 3&#xff09;忽略文件 …

回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&a…

RabbitMQ笔记-RabbitMQ基本术语

RabbitMQ基本术语 相关概念; 生产者&#xff08;Producer&#xff09;&#xff1a;投递消息。消息&#xff1a;消息体&#xff08;payload&#xff09;标签&#xff08;label&#xff09;&#xff1b;生产者把消息交给rabbitmq&#xff0c;rabbitmq会根据标签把消息发给感兴趣…

SQL-每日一题【1587. 银行账户概要 II】

题目 表: Users 表: Transactions 编写解决方案, 报告余额高于 10000 的所有用户的名字和余额. 账户的余额等于包含该账户的所有交易的总和。 返回结果表单 无顺序要求 。 查询结果格式如下例所示。 示例 1&#xff1a; 解题思路 1.题目要求我们查询出额高于 10000 的所有…

使用高斯滤波器进行表面开放轮廓过滤研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【洁洁送书第五期】为什么我们要了解可观测性工程

导读 可观测性已成为一个热门话题&#xff0c;并广受关注。随着它的普及&#xff0c;“可观测性”不幸被误作“监控”或“系统遥测”的同义词。可观测性是软件系统的一个特征。而且&#xff0c;只有当团队采用新的实践进行持续开发时&#xff0c;才能在生产软件系统中有效利用这…

smiley-http-proxy-servlet 实现springboot 接口反向代理,站点代理,项目鉴权,安全的引入第三方项目服务

背景&#xff1a; 项目初期 和硬件集成&#xff0c;实现了些功能服务&#xff0c;由于是局域网环境&#xff0c;安全问题当时都可以最小化无视。随着对接的服务越来越多&#xff0c;部分功能上云&#xff0c;此时就需要有一种手段可以控制到其他项目/接口的访问权限。 无疑 反向…

API接口文档利器:Swagger 和 接口调试利器:Postman

2.接口相关工具 2.1API接口文档利器&#xff1a;Swagger 2.1.1Swagger介绍 Swagger 是一个规范和完整的框架&#xff0c;用于生成、描述、调用和可视化 RESTful 风格的 Web 服务 (https://swagger.io/)。 它的主要作用是&#xff1a; 使得前后端分离开发更加方便&#xff0…

分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测

分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测 目录 分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测 程序设计 完整源码和数据获取方式&#xff1a; …

低压风机单片机方案

低压风机通常由电机、转子、机壳、进气管、出气管、齿轮和减速机等组成。电机带动转子旋转&#xff0c;旋转的转子带动齿轮和减速机转动&#xff0c;进而形成空气被吸入转子内部&#xff0c;通过旋转而产生的离心力把气体压缩&#xff0c;并将气体排出。 低压风机方案的主控型…

c++ 友元 运算符重载详解

友元 c是面向对象的&#xff0c;目的之一&#xff1a;封装 封装&#xff1a; 优点之一&#xff0c;就是安全。 缺点&#xff1a;在某些特殊的场合&#xff0c;不是很方便。 华为与IBM 40亿的咨询故事 IBM需要对华为各级部门做深度咨询分析&#xff0c; 为了提高咨询效率&a…

【MyBatis】动态SQL > 重点:${...}和#{...}与resultMap和resultType的区别

目录 一、MyBatis动态sql 1.1 动态sql的作用 1.2 动态sql作用论证 1.2.1 条件判断&#xff1a;<if> 1.2.2 循环迭代&#xff1a;<foreach> 1.2.3 SQL片段重用 1.2.4 动态条件组合&#xff1a;<choose><when><otherwise> 1.2.5 <where…