生成式人工智能的潜在有害影响与未来之路(三)

产品责任法的潜在适用

背景和风险

产品责任是整个二十世纪发展起来的一个法律领域,旨在应对大规模生产的产品可能对社会造成的伤害。这一法律领域侧重于三个主要危害:设计缺陷的产品、制造缺陷的产品和营销缺陷的产品。产品责任法的特点有两个要素:(i)其适应能力和演变能力,以应对新类型的产品和危害,以及(ii)其关注的是将可致命或极为有害的产品与造成危害但不可能以不同的方式设计、制造或营销的产品或简单地以不合理的方式使用的产品区分开来。

与苏打水瓶、机械割草机、药品或化妆品等制成品一样,生成人工智能模型可以被视为科技公司开发的一种新形式的数字产品,并被广泛部署,有可能造成大规模伤害。例如,生成型人工智能产品可能会通过诽谤他人对其声誉造成损害,直接滥用或促成对他人的滥用,侵犯知识产权,侵犯消费者隐私。

产品责任的演变是因为需要分析和纠正新的、大规模生产的技术产品造成的危害。随着生成性人工智能以更多的方式影响更多的人,社会面临的情况将类似于20世纪发生的技术变革,工业制造业、汽车和新型计算机化机器的兴起。尚未解决的问题是,产品责任理论是否以及在多大程度上能够充分解决生成人工智能的危害。

到目前为止,这个问题的答案是喜忧参半的。例如,在罗杰斯诉克里斯蒂案(2020)中,第三巡回法院裁定,自动风险模型不能被视为产品责任产品,因为它不是“商业上分配用于使用或消费的有形个人财产”。然而,一年后,在冈萨雷斯诉谷歌案中,第九巡回法院的古尔德法官认为,“社交媒体公司应该被视为通过用户眼中的强制广告设备制造和‘销售’其社交媒体产品。”几位法律学者还提出,产品责任是一种弥补自动化系统危害的机制。随着生成人工智能的日益突出和复杂,它们的危害往往是在没有人直接提示或编辑的情况下自动产生的。这将迫使法院考虑产品责任在纠正这些危害中的作用,以及在当今日益数字化的世界中,应如何更新涉及有形、机械化产品及其制造公司的旧的产品责任概念。

危害

  • 物理:生成型人工智能可能会产生关于个人的虚假信息,导致身体暴力和危险,或者可能持有个人为了自身安全而试图删除的信息。
  • 经济/经济损失/机会损失:世代人工智能会导致风格被模仿的艺术家的收入损失,并可能导致失业或某些行业的工作机会减少,如果没有某种形式的责任,个人将得不到补偿。
  • 声誉/关系/社会污名化:传播有关个人的错误信息会严重损害他们的声誉、关系和尊严。
  • 心理:生成性人工智能伤害的影响可能会导致情绪困扰、恐惧、无助、沮丧和其他严重的情绪伤害。

干预措施

  • 学者、政策制定者和原告律师应探索普通法和法定产品责任法制度如何适用于纠正人工智能产生的危害。产品责任法本身可能会占上风,或者取而代之的是基于其一些原则的新原则,但无论哪种方式,当私人受到生成人工智能的伤害时,他们都必须有补救措施。

增强市场力量和集中度

背景和风险

开发、培训、使用和维护生成性人工智能工具是一项资源密集型工作。除了上文“环境影响”部分讨论的环境成本外,生成人工智能工具的开发和维护还需要花费大量的资金和计算资源。例如,为了保持运行ChatGPT所需的底层计算能力,专家估计,OpenAI每天必须花费大约70万美元,仅在2022年就导致OpenAI损失5.4亿美元。为了弥补这一损失,OpenAI寻求并获得了微软超过100亿美元的投资,其中包括使用Microsoft Azure的极其必要和昂贵的云托管服务。据报道,OpenAI还寻求1000亿美元的额外投资。据估计,Alphabet将花费2000万美元的计算成本来训练其庞大的5400亿参数语言模型PaLM(路径语言模型)。

大规模人工智能模型的天文数字成本意味着,只有最大的科技公司才能处理和承担维护和控制模型的快速增长的需求,以及最近生成性人工智能进步所需的公共关系和游说需求。影响公众对生成人工智能看法的根深蒂固的力量的一个例子是“基础”一词的流行,该词用于描述GPT-4和LAION B-5等大型模型。正如AI Now研究所解释的那样,“基础”一词是斯坦福大学在2022年初推出的,此前发表了一篇文章,列出了与大型语言模型相关的许多生存危害。将这些模型称为“基础性”,旨在将它们(以及支持它们的人)与毫无疑问的科学进步等同起来,这是通往“人工通用智能”(AGI)道路上的垫脚石——这是另一个模糊的术语,唤起了科幻小说中取代或取代人类智能的概念。通过将生成性人工智能工具描述为基础性的科学进步,科技公司和人工智能传道者认为大规模采用生成型人工智能是不可避免的。

此外,许多领先的生成人工智能工具,以及支持它们的培训方法和云计算服务,都由包括亚马逊、谷歌和微软在内的少数几家科技公司拥有和维护。这几家公司不仅在开发生成性人工智能方面占据主导地位,而且在提供生成性人工智慧所需的底层工具和服务方面占据主导优势,这进一步集中了一个市场,尽管推广了“开源”技术,但仍被少数强大的公司所占据,这些公司拥有不透明的人工智能开发方法和限制竞争的激励措施。

危害

  • 经济/经济损失/机会损失:权力只集中在少数大公司,这意味着任何不想为这些特定公司工作或被这些公司拒绝的个人都可能无法完全在生成型人工智能行业工作。
  • 自主性:大型科技公司对生成人工智能的垄断削弱了竞争对手开发或其他人获得必要资源的能力。
  • 自主性:由于空间中的参与者较少,选择必然有限。
  • 自主性/歧视:任何数据质量问题都会因重复使用而加剧,并在少数占主导地位的参与者中传播。
  • 歧视:大型科技公司在招聘或工作场所的任何歧视行为都将对该领域产生更直接、更强烈的影响,因为改变雇主或抗议待遇并继续在该领域工作的机会有限。

示例

  • 《华尔街日报》阐述了生成性人工智能“竞赛”将如何让谷歌和微软变得更富有、“甚至更强大”。
  • 联邦贸易委员会正在对云计算提供商的商业实践展开调查。

干预措施

  • 颁布法律,为反垄断执法者提供额外资源并加强其权威。
  • 倡导者和评论员应明确将数据和计算资源优势与行业覆盖范围联系起来。
  • 改革合并指南,以反映反垄断审查中如何考虑数据优势的合并。
  • 倡导者和记者应避免助长主要由感兴趣的行业行为者传播的与中国的“军备竞赛”动态。

建议

立法和监管

  • 颁布一项法律,将恐吓、欺骗或故意误导某人有关选举或候选人的信息定为非法(无论手段如何),如《欺诈行为和选民恐吓预防法》。
  • 通过《美国数据隐私保护法》——ADPPA将个人信息的收集和使用限制在合理必要且与信息收集目的相称的范围内。这种限制将限制对个人数据的不当二次使用,例如基于敏感数据的跨站点跟踪和定位/分析。ADPPA还将限制使用个人数据来训练可以操纵用户的生成人工智能系统。
  • 向反垄断执法机构提供额外资源,以充分监测和采取执法行动,打击与数据和计算机市场集中有关的违规行为。
  • 通过立法或监管手段实施数据最小化标准,限制个人信息用于生成人工智能培训。
  • 颁布立法,要求政府和商业使用人工智能必须是可证明的非歧视性和主动透明的,强制进行审计和影响评估,并禁止操纵或其他不可接受的风险使用。白宫人工智能权利法案和美国国家标准与技术研究所的人工智能RMF都为这些要求提供了有用的框架。
  • 不要为Generative AI工具的公司或运营商提供广泛的豁免权(根据第230条或其他规定)。
  • 当图像用于人工智能培训时,不要为侵犯版权提供立法或监管豁免。
  • 如果没有将可比的资源用于评估专业人员、控制机制和执行能力,就不要在人工智能的开发上投入更多的资金。
  • 确保使用人工智能输出的实体与产生这些输出的实体共同对使用人工智能的实体对这些输出造成的伤害负责。

管理和执行

  • 继续使用现有的消费者保护机构,包括不公平和欺骗行为或实践(FTC)和不公平、欺骗或虐待行为或实践机构(CFPB),以防止操纵、欺骗和不公平的人工智能行为。
  • 通过咨询意见和政策声明制定标准,以评估与生成人工智能(如版权、商标等)相关的知识产权和其他权利要求。
  • 要求公布Generative AI模型的环境足迹及其使用情况。
  • 确保禁令救济,以停止缺乏必要保障的生成人工智能系统的运行(如意大利使用GDPR所示)。
  • 颁布规则,通过强制审计和影响评估,要求人工智能的政府和商业用途都是可证明的非歧视性和主动透明的,并禁止操纵性或其他不可接受的风险用途。白宫人工智能权利法案和美国国家标准与技术研究所的人工智能RMF都为这些要求提供了有用的框架。

私人行为者行为

  • 考虑使用生成人工智能采购的实体应严格审查这些工具是否合适。
  • 实体应主动记录数据生命周期,并实施数据审计跟踪。
  • 个人、公司和研究团队应该开发工具来检测培训模型中的受保护信息,比如Glaze。
  • 开发检测deepfakes的工具,并使这些工具易于公众访问和使用,以帮助快速揭穿deepfake。
  • 对任何受保护的文档或图像进行水印处理,以防止或限制它们在人工智能模型训练中的使用。
  • 发布人工智能系统的数据源、训练集和逻辑。
  • 限制生成性人工智能模型的允许外部使用和修改范围(包括通过API访问)。
  • 将Generative AI的允许使用限制在低风险环境中。
  • 确定并公布Generative AI模型及其使用的环境足迹。
  • 雇主应该投资培训工人,让他们掌握新技能,从事被生成人工智能改变的工作。
  • 雇主应投资于对生成人工智能创造的新工作岗位需求不断增长的培训(例如,即时工程师、机器经理、人工智能审计员和人工智能培训师)。
  • 公司应该投资于培训以留住劳动力,而不是通过裁员来削减成本,以支持生成性人工智能技术。
  • 公司、政府和公私项目应投入资源,帮助因生成人工智能而流离失所的工人找到替代工作。
  • 技术供应商和服务提供商应该投资于提高工人生产力的人工智能研发,而不是取代工作职能。
  • 科技公司应该让那些真正致力于开发和培训生成性人工智能的人,特别是那些在全球南方的人,发出声音,并赋予他们决策权。大公司需要提高员工的参与度,以确保公平。
  • 与那些劳动力帮助建立系统的人分享利润,而不是将利润集中在股东和高收入者之间。
  • 工资应该提高,以与生成人工智能提高的工人生产力相匹配。工作场所不应该使用生成人工智能作为降低劳动力成本和降低工人贡献的手段。

危害附录

算法的危害今天存在,并且已经存在很长一段时间了。然而,随着ChatGPT等生成性人工智能工具的引入,算法危害的范围和严重程度都呈爆炸式增长。除了侵犯数据隐私和算法系统造成的独特危害外,生成人工智能还将加速对权威信息来源的信任瓦解,加剧IP盗窃和假冒等现有危害,并破坏对受伤害者的现有法律保护。

本附录旨在让您更好地了解生成人工智能目前正在造成或加剧的危害。然而,人工智能正在快速创新,每天都有新的伤害案例出现,因此不可能将生成性人工智能可能造成的每一个潜在伤害都封装起来。本附录是当今生成人工智能造成的紧迫和真实危害的快照,而不是对所有可能危害的全面分析。

本附录包括:

  1. 生成人工智能造成的许多常见危害的定义。
  2. 生成人工智能造成的现实世界危害的例子。
  3. 比较每个例子所涉及的危害的表格。

常见的人工智能危害

  1. 物理伤害:这些是导致身体伤害或死亡的伤害,可能包括人工智能公司为身体攻击提供便利或鼓励的行为。
  2. 经济危害:这些危害会造成金钱损失或降低某物的价值,其中可能包括那些使用人工智能冒充受害者进行欺诈交易的危害。
  3. 声誉损害:这些损害涉及对某人在其社区内的声誉的损害,这反过来可能导致商业损失或社会贱民。
  4. 心理伤害:这些伤害包括各种负面的、法律认可的心理反应,如焦虑、痛苦、担忧、愤怒、干扰或恶化。Danielle Citron和Daniel Solove将这些伤害分为两类:情绪困扰或干扰。
  5. 自主性伤害:这些伤害限制、破坏或以其他方式影响人们的选择,包括胁迫、操纵、未告知他人、以破坏用户选择的方式行事以及抑制合法行为等行为。
  6. 歧视危害:这些危害会加深或加剧不平等,使某些人因其人口统计、特征或从属关系而处于不利地位。歧视伤害往往会导致其他类型的人工智能伤害。
  7. 关系伤害:这些伤害包括破坏个人或职业关系,对一个人的健康、幸福或社会功能产生负面影响。通常,这些伤害会通过降低信任或破坏社会界限来破坏关系。
  8. 机会损失:与经济、声誉、歧视和关系伤害有关,机会损失是一种特别常见的人工智能伤害,人工智能介导的内容或决策阻碍了个人获得就业、政府福利、住房和教育机会。
  9. 社会污名化和尊严伤害:与名誉、歧视和关系伤害有关,这些伤害通过丧失自由、加强监督、强化刻板印象或对个人尊严的其他负面影响等方式,破坏个人的自我意识和尊严。

伤害的真实例子

  1. 自杀:ChatGPT鼓励个人自杀。
  2. 冒充:骗子使用生成人工智能诱骗一名女子认为她的女儿被绑架,要求100万美元作为释放她的回报。
  3. 深度造假:一位著名的调查记者的色情深度造假在网上疯传后,在网上遭到嘲笑。
  4. 诽谤:ChatGPT错误地将一名法学教授列入被控性侵的教授名单。
  5. 性化:人工智能图像生成应用Lensa以过度性化的方式描绘女性,尤其是亚裔和黑人女性,无论提供的来源照片如何。
  6. 物理伤害的威胁:一个人使用ChatGPT来指定来自不同原籍国的人是否应该受到酷刑。
  7. 虚假信息:在土耳其的选举中,一位总统候选人利用生成人工智能散布了150多条毫无根据的恐怖主义指控。
  8. 侵犯版权:艺术家作品的部分内容经常被人工智能图像生成器模仿或复制,包括受商业保护的艺术作品。
  9. 劳资纠纷:工作室威胁要使用生成人工智能来取代罢工的作家,破坏了劳资谈判。
  10. 数据泄露:一种病毒生成的人工智能工具,其松懈的安全做法和对个人数据的维护导致姓名、提示和电子邮件等个人信息被暴露。

案例与危害之间的关系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/104211.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LinkedList的顶级理解

目录 1.LinkedList的介绍 LinkedList的结构 2.LinkedList的模拟实现 2.1创建双链表 2.2头插法 2.3尾插法 2.4任意位置插入 2.5查找关键字 2.6链表长度 2.7遍历链表 2.8删除第一次出现关键字为key的节点 2.9删除所有值为key的节点 2.10清空链表 2.11完整代码 3.…

聚观早报 | 云鲸扫拖机器人J4体验;芯科科技第三代无线开发平台

【聚观365】8月24日消息 云鲸扫拖机器人J4体验 芯科科技推出第三代无线开发平台 英伟达与VMWare宣布扩大合作 万物新生(爱回收)2023年二季度财报 充电桩需求增长带动汽车后服务市场 云鲸扫拖机器人J4体验 家庭卫生清洁是每个人都无法回避的事情&am…

Unity 类Scene窗口相机控制

类Scene窗口相机控制 🍔效果 🍔效果 传送门👈

疫情下社区管理系统的设计与实现(论文+源码)_kaic

疫情下社区管理系统 摘 要:新冠疫情下的社区人员管理系统是基于SpringBoot搭建的一套前后端分离系统。面向疫情下的社区管理人员和社区用户,主要用于进行社区服务,进行高效的社区人员管理。具有一定的经济效益和社会效益。本文分析了新冠疫情…

上门服务系统|上门服务小程序如何提升生活质量?

上门服务其实就是本地生活服务的升级,上门服务包含很多行业可以做的。例如:厨师上门、上门家电维修、跑腿等等。如今各类本地化生活服务越来越受大家的喜爱。基于此市场愿景,我们来谈谈上门服务系统功能。 一、上门服务系统功能 1、预约服务…

美创科技“签”手柠檬文才学堂,共推高校数据安全建设

近日,由柠檬文才学堂联合中国教育在线、东北财经大学网络教育学院共同主办的“三教统筹下高校继续教育数字化转型研讨”顺利召开。 国内高等院校(高职院校)继续教育分管领导,继续教育学院领导及继续教育信息化、教学教务管理、课程…

IP库新增经过实践的Verilog 库

网上严重缺乏实用的 Verilog 设计。Project F 库是尝试让 FPGA 初学者变得更好部分。 设计包括 Clock- 时钟生成 (PLL) 和域交叉Display - 显示时序、帧缓冲区、DVI/HDMI 输出Essential- 适用于多种设计的便捷模块Graphics- 绘制线条和形状Maths- 除法、LFSR、平方根、正弦....…

C语言练习1(巩固提升)

C语言练习1 选择题 前言 “人生在勤,勤则不匮。”幸福不会从天降,美好生活靠劳动创造。全面建成小康社会的奋斗目标,为广大劳动群众指明了光明的未来;全面建成小康社会的历史任务,为广大劳动群众赋予了光荣的使命&…

【填坑向】MySQL常见报错及处理系列(ERROR! The server quit without updating PID file)

本系列其他文章 【填坑向】MySQL常见报错及处理系列(Communications link failure & Access denied for user ‘root‘‘localhost‘)_AQin1012的博客-CSDN博客翻一下大致的意思就是默认会按照如下的顺序读取配置文件,我上面贴出的配置文…

WebDAV之葫芦儿·派盘+柚子记账

柚子记账是一个手机记账的软件,这个软件主要是给那些懒人进行设计的,这里有很多关于记账的模板可以让你直接在线使用,你只需要导入相关的数据就可以了,整个操作是非常简单的,而且你也可以进行自定义的图表制作,生成你自己的记账模式。每当你记完之后,系统都会自动给你总…

Systick滴答定时器

今天,对Systick滴答定时器进行资料的整理,这个定时器在程序中的作用就是提供延时函数。参考(【STM32】Systick滴答定时器_一只大喵咪1201的博客-CSDN博客) Systick滴答定时器的介绍 相关寄存器 寄存器CTRL 补充HCLK 寄存器LOAD…

Flask 单元测试

如果一个软件项目没有经过测试,就像做的菜里没加盐一样。Flask 作为一个 Web 软件项目,如何做单元测试呢,今天我们来了解下,基于 unittest 的 Flask 项目的单元测试。 什么是单元测试 单元测试是软件测试的一种类型。顾名思义&a…

学习Linux的注意事项(使用经验;目录作用;服务器注意事项)

本篇分享学习Linux过程中的一些经验 文章目录 1. Linux系统的使用经验2. Linux各目录的作用3. 服务器注意事项 1. Linux系统的使用经验 Linux严格区分大小写Linux中所有内容以文件形式保存,包括硬件,Linux是以管理文件的方式操作硬件 硬盘文件是/dev/s…

自定义loadbalance实现feignclient的自定义路由

自定义loadbalance实现feignclient的自定义路由 项目背景 服务A有多个同事同时开发,每个同事都在dev或者test环境发布自己的代码,注册到注册中心有好几个(本文nacos为例),这时候调用feign可能会导致请求到不同分支的服务上面,会…

使用Hydra进行密码暴力破解

Hydra是一款强大的密码暴力破解工具,可用于尝试使用不同的用户名和密码组合来破解各种登录系统,如SSH、FTP、HTTP等。 步骤: 选择目标: 首先,选择 要尝试破解的目标系统,例如SSH服务器、FTP服务器或Web应用…

【洛谷】P1873 [COCI2011-2012#5] EKO / 砍树

原题链接&#xff1a;https://www.luogu.com.cn/problem/P1873 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 二分答案。 3. 代码实现 #include<bits/stdc.h> using namespace std; #define ll long long const int N 1e6 10; int a[N], …

Flutter Cannot run with sound null safety, because the following dependencies

flutter sdk 版本升级到2.0或者更高的版本后&#xff0c;运行之前的代码会报错 Error: Cannot run with sound null safety, because the following dependencies dont support null safety:- package:flutter_swiper- package:flutter_page_indicator- package:transformer_p…

记Flask-Migrate迁移数据库失败的两个Bug——详解循环导入问题

文章目录 Flask-Migrate迁移数据库失败的两个Bug1、找不到数据库&#xff1a;Unknown database ***2、迁移后没有效果&#xff1a;No changes in schema detected. Flask-Migrate迁移数据库失败的两个Bug 1、找不到数据库&#xff1a;Unknown database ‘***’ 若还没有创建数…

【C++】构造函数和初始化列表的性能差距

构造函数和初始化列表的性能差距对比测试 1.说明 在C类和对象中&#xff0c;你可能听到过更加推荐用初始化列表来初始化类内成员。如果类内成员是自定义类型&#xff0c;则只能在初始化列表中调用自定义类型的构造函数。 但初始化列表和在构造函数体内直接赋值有无性能差距呢…

【Python机器学习】实验15 将Lenet5应用于Cifar10数据集

文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值&#xff08;神经网络的…