如何基于自己训练的Yolov5权重,结合DeepSort实现目标跟踪

网上有很多相关不错的操作demo,但自己在训练过程仍然遇到不少疑惑。因此,我这总结一下操作过程中所解决的问题。

1、deepsort的训练集是否必须基于逐帧视频?
我经过尝试,发现非连续性的图像仍可以作为训练集。一个实例(如指定某个人、某辆车等)对应一个train\test文件夹即可。当然,逐帧效果更佳。
在这里插入图片描述

2、yolo训练的类型不止一个,该怎么办?
按照问题1中,每个类型都可以制作1个或多个实例(如类型0表示自行车,则可以有红色自行车、蓝色自行车等多个实例,类别1表示xxx,同理),全部都集中存放于train\test即可。

在这里插入图片描述

3、deepsort训练完成后,如何实现对自己视频中的目标进行跟踪?
将track.py相关参数进行修改即可,如下所示。注意,若yolo存在识别多个类别,则需要对应修改’–classes’中参数!!!

if __name__ == '__main__':parser = argparse.ArgumentParser()# 表示yolo训练得到的权重parser.add_argument('--yolo_weights', type=str, default='yolov5/weights/best.pt', help='model.pt path')# 表示训练得到的权重parser.add_argument('--deep_sort_weights', type=str, default='deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7', help='ckpt.t7 path')# 测试视频parser.add_argument('--source', type=str, default='data/test.mp4', help='source')parser.add_argument('--output', type=str, default='inference/output', help='output folder')  # output folderparser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')# True表示显示、保存、存储结果parser.add_argument('--show-vid', action='store_true', default=True,help='display tracking video results')parser.add_argument('--save-vid', action='store_true',default=True, help='save video tracking results')parser.add_argument('--save-txt', action='store_true',default=True, help='save MOT compliant results to *.txt')# 表示跟踪所有类别,yolo训练类型共200种parser.add_argument('--classes', nargs='+', default=list(range(200)), type=int, help='filter by class')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--evaluate', action='store_true', help='augmented inference')parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")args = parser.parse_args()args.img_size = check_img_size(args.img_size)with torch.no_grad():detect(args)

效果
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/109706.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】详解声明和定义

2023年8月28日,周一下午 研究了一个下午才彻底弄明白... 写到晚上才写完这篇博客。 目录 声明和定义的根本区别结构体的声明和定义声明结构体 定义结构体类的声明和定义函数的定义和声明声明函数 定义函数变量声明和定义声明变量定义变量 声明和定义的根本区别 …

使用ssh进行服务器连接

前言:相信看到这篇文章的小伙伴都或多或少有一些编程基础,懂得一些linux的基本命令了吧,本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python:一种编程语言&…

瞬态电压抑制器(TVS)汽车级 SZESD9B5.0ST5G 工作原理、特性参数、封装形式

什么是汽车级TVS二极管? TVS二极管是一种用于保护电子电路的电子元件。它主要用于电路中的过电压保护,防止电压过高而损坏其他部件。TVS二极管通常被称为“汽车级”是因为它们能够满足汽车电子系统的特殊要求。 在汽车电子系统中,由于车辆启…

centos7安装nacos

版本选择 Nacos 1.X 是老版本,将来会停止维护。 建议您使用2.X版本。 请移步到 Nacos2.X相关文档. 您可以在Nacos的release notes中找到每个版本支持的功能的介绍,当前推荐的稳定版本为2.1.1。 https://nacos.io/zh-cn/docs/quick-start.html https:/…

机器学习中XGBoost算法调参技巧

本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。 对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你…

消息队列前世今生 字节跳动 Kafka #创作活动

消息队列前世今生 1.1 案例一: 系统崩溃 首先大家跟着我想象一下下面的这个的场景, 看到新出的游戏机,太贵了买不起,这个时候你突然想到,今天抖音直播搞活动,打开抖音搜索,找到直播间以后&am…

基于HarmonyOS ArkUI实现七夕壁纸轮播

七夕情人节,为了Ta,你打算用什么方式表达爱?是包包、鲜花、美酒、巧克力,还是一封充满爱意的短信?作为程序员,以代码之名,表达爱。本节将演示如何在基于HarmonyOS ArkUI的SwiperController、Ima…

qt信号槽同步问题

目录 信号槽: 注意事项: 具体例子: 线程安全问题的例子: 信号槽: 在Qt编程中,信号(Signal)和槽(Slot)是一种用于在对象之间进行通信的机制。信号用于发出…

ubuntu22安装和部署Kettle8.2

前提 kettle是纯java编写的etl开源工具,目前kettle7和kettle8都需要java8或者以上才能正常运行。所以运行kettle前先检查java环境是否正确配置,java版本是否是8或者以上。 kettle安装 1、创建kettle目录,并将kettle的zip包解压到kettle目…

推荐前 6 名 JavaScript 和 HTML5 游戏引擎

推荐:使用 NSDT场景编辑器 助你快速搭建3D应用场景 事实是,自从引入JavaScript WebGL API以来,现代浏览器具有直观的功能,使它们能够渲染更复杂和复杂的2D和3D图形,而无需依赖第三方插件。 你可以用纯粹的JavaScript开…

使用ffmpeg将WebM文件转换为MP4文件的简单应用程序

tiktok网上下载的short视频是webm格式的,有些程序无法处理该程序,比如roop程序,本文介绍了如何使用wxPython库创建一个简单的GUI应用程序,用于将WebM文件转换为MP4文件。这个应用程序使用Python编写,通过调用FFmpeg命令…

研磨设计模式day13组合模式

目录 场景 不用模式实现 代码实现 有何问题 解决方案 代码改造 组合模式优缺点 思考 何时选用 场景 不用模式实现 代码实现 叶子对象 package day14组合模式;/*** 叶子对象*/ public class Leaf {/*** 叶子对象的名字*/private String name "";/**…

第十四课:采用 Qt 开发翻页/分页/多页窗体组件

功能描述:采用 Qt 开发一个翻页/分页/多页的窗体组件,封装为 QWidget 的子类,在你的应用程序中可直接使用。 一、最终演示效果 本次制作的翻页/分页/多页窗体组件是基于 Qt 开发,整个程序封装成 PageWidget 类,继承于…

5G NR:协议 - PDCCH信道

1、基本概念 不同于LTE中的控制信道包括PCFICH、PHICH和PDCCH,在5G NR中,控制信道仅包括PDCCH(Physical Downlink Control Channel),负责物理层各种关键控制信息的传递,PDCCH中传递的下行控制信息&#xff…

507页XX市应急管理局智慧矿山煤矿数字化矿山技术解决方案

导读:原文《507页XX市应急管理局智慧矿山煤矿数字化矿山技术解决方案》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 部分内容: 第一章 项…

Git基础教程-常用命令整理:学会Git使用方法和错误解决

目录 一、了解Git的基本概念 二、Git的安装和配置 Git的安装 Git的配置 用户信息 文本编辑器 差异分析工具 查看配置信息 三、Git的基本操作 基本原理 基本操作命令 基本操作示例 场景一:创建新仓库 场景二:拉取并编辑远程仓库 四、常见问…

ModaHub魔搭社区:将图像数据添加至Milvus Cloud向量数据库中

将图像数据添加至向量数据库中 图像分割裁剪完成后,我们就可以将其添加至 Milvus Cloud 向量数据库中了。为了方便上手,本项目中使用了 Milvus Lite 版本,可以在 notebook 中运行 Milvus 实例。接下来,使用 PyMilvus 连接至 Milvus Lite 提供的默认服务器。 这一步骤中,…

量化:pandas基础

文章目录 简介Series构造 DataFrame构造列的查改增删填充默认值用loc与iloc取数据条件选择 简介 pandas是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构。 pandas主要的两种数据结构为Series和DataFrame,分别用于处理一维和二维数据。…

掌握C/C++协程编程,轻松驾驭并发编程世界

一、引言 协程的定义和背景 协程(Coroutine),又称为微线程或者轻量级线程,是一种用户态的、可在单个线程中并发执行的程序组件。协程可以看作是一个更轻量级的线程,由程序员主动控制调度。它们拥有自己的寄存器上下文…

常见API架构介绍

常见API架构介绍 两个服务间进行接口调用,通过调用API的形式进行交互,这是常见CS架构实现的模式,客户端通过调用API即可使用服务端提供的服务。相较于SPI这种模式,就是服务端只规定服务接口,但具体实现交由第三方或者自…