最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。
加载ImageNet预训练的基础模型
from tensorflow import kerasbase_model = keras.applications.VGG16(weights="imagenet",input_shape=(224, 224, 3),include_top=False)
冻结基础模型
# Freeze base model
base_model.trainable = False
向模型添加新层
# Create inputs with correct shape
inputs = keras.Input(shape=(224, 224, 3))x = base_model(inputs, training=False)# Add pooling layer or flatten layer
x = keras.layers.GlobalAveragePooling2D()(x)# Add final dense layer
outputs = keras.layers.Dense(6, activation = 'softmax')(x)# Combine inputs and outputs to create model
model = keras.Model(inputs, outputs)
model.summary()
编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
扩充数据
from tensorflow.keras.preprocessing.image import ImageDataGeneratordatagen_train = ImageDataGenerator(featurewise_center=True, # set input mean to 0 over the datasetsamplewise_center=True, # set each sample mean to 0rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)height_shift_range=0.1, # randomly shift images vertically (fraction of total height)horizontal_flip=True, # randomly flip imagesvertical_flip=False)
datagen_valid = ImageDataGenerator(featurewise_center=True, # set input mean to 0 over the datasetsamplewise_center=True, # set each sample mean to 0rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)height_shift_range=0.1, # randomly shift images vertically (fraction of total height)horizontal_flip=True, # randomly flip imagesvertical_flip=False)
加载数据集
# load and iterate training dataset
train_it = datagen_train.flow_from_directory("data/fruits/train", target_size=(224, 224), color_mode="rgb",class_mode="categorical",
)# load and iterate validation dataset
valid_it = datagen_valid.flow_from_directory("data/fruits/valid", target_size=(224, 224), color_mode="rgb",class_mode="categorical",
)
训练模型
现在开始训练模型!将训练和测试数据集传递给fit
函数,并设置所需的训练次数(epochs)
model.fit(train_it,validation_data=valid_it,steps_per_epoch=train_it.samples/train_it.batch_size,validation_steps=valid_it.samples/valid_it.batch_size,epochs=10)
其实到这里已经满足了评估需求,达到了92%以上的准确率
所以可以不进行微调的部分,直接运行后边的代码
就可以生成证书了