ChatGPT Prompting开发实战(二)

一、基于LangChain源码react来解析prompt engineering

在LangChain源码中一个特别重要的部分就是react,它的基本概念是,LLM在推理时会产生很多中间步骤而不是直接产生结果,这些中间步骤可以被用来与外界进行交互,然后产生new context:

我们先看下textworld_prompt这个文件,按照前面提到的“thought”,“action”,“observation”的结构给出了如下样例,其中observation部分以文字的形式提供了一种类似于解题的思路来说明如何完成具体的action:

另外看一下wiki_prompt这个文件,在所给的例子中,首先也是给出一个question,然后针对问题给出thought,也就是如何进行推理:

Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?

Thought: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the elevation range of the area.

Action: Search[Colorado orogeny]

在这里,执行action的不是LLM,而是agent,执行wiki搜索之后返回结果:

Observation: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.

Thought: It does not mention the eastern sector. So I need to look up eastern sector.

Action: Lookup[eastern sector]

从上面的返回结果看,并没有提到关键信息“eastern sector”,因此上面的thought提示需要查找这部分信息:

Observation: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.

Thought: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High Plains and find its elevation range.

Action: Search[High Plains]

根据上面查询“eastern sector”的结果,接下来需要搜索关于“High Plains”的信息:

Observation: High Plains refers to one of two distinct land regions

Thought: I need to instead search High Plains (United States).

Action: Search[High Plains (United States)]

由于上面的搜索结果提到了“two distinct land regions”,所以接下来的步骤就是搜索关于“High Plains (United States)”的信息:

Observation: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]

Thought: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.

Action: Finish[1,800 to 7,000 ft]

基于上面的搜索结果进行推理,最后获得了我们想要的数据:1,800 to 7,000 ft。

上面重复迭代多次的observation+thought+action就构成了一个链式的过程。

二、结合Chain of Thought(COT)经典案例剖析prompt

接下来我们针对这样一个链式的过程,来看一个应用案例。在这个例子中,我们使用了OpenAI的API来调用GPT-3.5模型,并没有使用LangChain的方式:

我们来看下关于“Chain-of-Thought Prompting”是如何进行构造的,这个prompt是跟客户查询有关的,定义了多个步骤来回答客户的问题:

Step 1是检查用户的问题是否针对一个具体的产品或者一组产品来说的

Step 2是检查用户问题涉及到的产品是否是以下列出的这些产品,这里可能是为了演示的方便,所以直接以文本的形式呈现出来,当然这些产品信息可以存储在数据库里

Step 3判断如果用户问题涉及以上产品,那么列出用户针对产品会提什么问题的任意假设:

Step 4基于现有的产品信息来判断用户提出的问题是否有匹配的答案:

       Step 5提示应该以对用户友好的方式来修正用户提到的不正确的问题假设,也就是说用户只能针对5个可用的产品来提相关问题:

以上部分都可以看做是基本的上下文信息(system message),接下来设定user_message的内容,调用方法get_completion_from_messages获得结果:

打印的结果如下,由于用户问题提到了具体产品和价格,所以step 2给出了每一种产品的价格,并对用户的假设进行了判断:

设定用户的问题如下:

do you sell tvs

这次给出的结果如下,推理步骤1和2共同判断了用户提到的TVs不在当前可用产品列表中,所以模型在运行时会按照之前的系统设定来给出恰当的回复给用户:

Step 1:#### The user is asking about a specific product category, TVs.

Step 2:#### The list of available products does not include any TVs.

Response to user:#### I'm sorry, but we do not sell TVs at this time. Our store specializes in computers and laptops. However, if you are interested in purchasing a computer or laptop, please let me know and I would be happy to assist you.

这个例子看上去不复杂,但是它的意义重大,因为上面所列的系统信息都是私有数据,如果已经告诉模型只能从私有数据中去查询,那么模型就不会从其它地方去获取数据,譬如针对上面step 2所列的信息,可以修改为从数据库或者vector store中进行查询(也就是使用具体的工具),如果使用LangChain,那么它可以帮我们封装这个过程,如果不使用LangChain,那么可以自己来封装。

If the user is asking about \

specific products, identify whether \

the products are in the following list.

接下来设定用户信息如下:

推理过程如下,step1 是针对用户问题的理解,因此step 2列出了当前可用的产品信息,由于用户问题中并没有给出明确的假设,所以step 4的内容是基于LLM的理解给出的,然后与本地的私有数据进行匹配,之后基于这些信息来回复给用户,所以整个过程都是LLM来驱动的:

Step 1:#### The user is asking for a recommendation for a laptop based on their profession.

Step 2:#### The available laptops are:

1. TechPro Ultrabook

2. BlueWave Gaming Laptop

3. PowerLite Convertible

4. TechPro Desktop

5. BlueWave Chromebook

Step 3:#### There are no assumptions made by the user in this message.

Step 4:#### Based on the user's profession as an iOS developer, they would require a laptop with a powerful processor and sufficient RAM to handle development tasks. The TechPro Ultrabook and the BlueWave Gaming Laptop would be suitable options for an iOS developer due to their powerful processors and high RAM capacity.

Response to user:#### As an iOS developer, I would recommend either the TechPro Ultrabook or the BlueWave Gaming Laptop. Both laptops have powerful processors and high RAM capacity, which are essential for development tasks.

通过以上经典案例展示了用LLM来驱动一切,驱动的关键在于你自己的prompt要写得很清楚。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/110621.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 易错题整理(一)5. 7. 11. 15. 33. 34

5. 最长回文子串 给你一个字符串 s,找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。 示例 1: 输入:s "babad" 输出:"bab" 解释:"aba&q…

4. 池化层相关概念

4.1 池化层原理 ① 最大池化层有时也被称为下采样。 ② dilation为空洞卷积,如下图所示。 ③ Ceil_model为当超出区域时,只取最左上角的值。 ④ 池化使得数据由5 * 5 变为3 * 3,甚至1 * 1的,这样导致计算的参数会大大减小。例如1080P的电…

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。 加载ImageNet预训练的基础模型 from tensorflow import kerasbase_model keras.applications.VGG16(weights"imagenet",input_shape(224, 224, 3),include_t…

基于数据湖的多流拼接方案-HUDI实操篇

目录 一、前情提要 二、代码Demo (一)多写问题 (二)如果要两个流写一个表,这种情况怎么处理? (三)测试结果 三、后序 一、前情提要 基于数据湖对两条实时流进行拼接&#xff0…

Viobot基本功能使用及介绍

设备拿到手当然是要先试一下效果的,这部分可以参考本专栏的第一篇 Viobot开机指南。 接下来我们就从UI开始熟悉这个产品吧! 1.状态 设备上电会自动运行它的程序,开启了一个服务器,上位机通过连接这个服务器连接到设备&#xff0c…

面试现场表现:展示你的编程能力和沟通技巧

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

成功项目风险预防可控的5个重点

成功的项目往往重视项目风险的预防和管控,这样有利于可能风险的及时控制和解决,将其不利影响降到最小。如果不重视对风险的预防和管控,不及时发现和处理项目风险,那么项目风险往往会为我们带来意想不到的不利后果,往往…

【IMX6ULL驱动开发学习】12.Linux SPI驱动实战:DAC驱动设计流程

基础回顾: 【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程_阿龙还在写代码的博客-CSDN博客 【IMX6ULL驱动开发学习】11.Linux之SPI驱动_阿龙还在写代码的博客-CSDN博客 一、编写驱动 查看芯片手册,有两种DAC数据格式&a…

安防监控视频平台EasyCVR视频汇聚平台调用接口出现跨域现象的问题解决方案

视频监控汇聚EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTSP、RTMP、FLV、HLS、WebRTC等格式的视…

08 通过从 库1 复制 *.ibd 到 库2 导致 mysql 启动报错

前言 呵呵 最近同事有这样的一个需求 需要将 库1 的一张表 复制到 库2 然后 我想到了 之前一直使用的通过复制这个库的 data 文件来进行数据迁移的思路, 是需要复制这个 库对应的 data 目录下的数据文件, 以及 ibdata1 文件 然后 我又在想 这里的场景能否也使用这里的额方式…

重生c++系列之类与对象(中篇)

好的继上期,我们今天带来c类与对象系列的继续学习。 类的6个默认成员函数 如果一个类中什么成员都没有,简称为空类。 空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下6个默认成员 函数。 …

Hbase文档--架构体系

阿丹: 基础概念了解之后了解目标知识的架构体系,就能事半功倍。 架构体系 关键组件介绍: HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起…

将NiceGUI应用程序打包成EXE文件

将NiceGUI应用程序打包成EXE文件 NiceGUI是一个简单易用的Python库,用于创建基于文本的用户界面。在本教程中,我们将学习如何将NiceGUI应用程序打包成可执行文件(EXE)。 步骤1:安装依赖项 首先,我们需要…

Oracle 本地客户端连接远程 Oracle 服务端并使用 c# 连接测试

这里写自定义目录标题 前言Oracle 客户端安装先决条件下载 Oracle 客户端Oracle 客户端环境变量配置 PL/SQLPL/SQL 下载PL/SQL 配置 配置远程连接tnsnames.ora 文件配置 使用 PL/SQL 连接远程数据库使用 C# 远程访问 Oracle 数据库结语 前言 最近有一个需要使用本地的 Oracle …

融云 CallPlus SDK 上线!1V1 音视频、远程服务类应用的实现利器

点击报名,9 月 21 日融云直播课 近期,融云新一代音视频通话场景化 SDK CallPlus 将正式上线!关注【融云全球互联网通信云】了解更多 融云 CallPlus 完整封装了拨打、振铃、接听、挂断等整套呼叫流程,支持一对一及群组多人音视频通…

深度图相关评测网站

文章目录 1 单目/Stereo相关测评网站介绍12 单目/Stereo相关测评网站介绍23 单目/Stereo相关测评网站介绍3 1 单目/Stereo相关测评网站介绍1 https://vision.middlebury.edu/stereo/eval3/ 2 单目/Stereo相关测评网站介绍2 http://www.cvlibs.net/datasets/kitti/eval_stereo…

Kafka 简介 + 学习笔记

消息队列 先说明消息队列是什么: 亚马逊: 消息队列是一种异步的服务间通信方式,适用于微服务架构。消息在被处理和删除之前一直存储在队列上。每条消息仅可被一位用户处理一次。消息队列可被用于分离重量级处理、缓冲或批处理工作以及缓解高…

图的四种存储方式

图片来源:王道数据结构第六章 目录 邻接矩阵法 不带权的 带权的图 邻接矩阵法的性能分析 链接 对阵矩阵的压缩存储 邻接矩阵法的性质 邻接表法 链接 树的孩子表示法 性能分析 对比邻接矩阵 十字链表法 性能分析 邻接多重表 邻接多重表存储无向图 四种…

pandas读取excel,再写入excel

需求是这样的,从一个表读取数据,然后每次执行创建一个新表将值写入 读取这个表 写入到这个表 分别对应的是e、h列数据,代码如下: import pandas as pd import openpyxl import datetime dfpd.read_excel(rC:\Users\admin\Deskt…

【实训项目】“魔法”APP-模型爱好者线上线下交流平台

1.设计摘要 自从2018年万代把翻模厂商龙桃子,后国内的模型厂商就开始逐渐慢慢的从单纯的翻模转向做魔改合金模型,一是由于单纯的出翻模的利润太低,二是由于翻模被万代查水表的风险很大。于是,国内的一些厂商把眼光转向合金成品&a…