新KG视点 | Jeff Pan、陈矫彦等——大语言模型与知识图谱的机遇与挑战

OpenKG

af6f0fbfaa2cbd677f910dc3180ebf8a.png

大模型专辑

导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织新KG视点系列文章——“大模型专辑”,不定期邀请业内专家对知识图谱与大模型的融合之道展开深入探讨。本期邀请到爱丁堡大学Jeff Pan教授、曼彻斯特大学陈矫彦研究员、浙江大学张文研究员、山西大学闫智超博士等分享的综述论文:“大语言模型与知识图谱的机遇与挑战”。

31b663cbf624e1f43618824f8a970623.png

ae34b6215eb15227dd801fb3b11e951f.png

文章作者 | Jeff Pan(爱丁堡大学终身教授)、陈矫彦(曼彻斯特大学)、张文(浙江大学)、闫智超(山西大学)等

笔记整理 | 邓鸿杰

内容审定 | 陈华钧

论文链接 | https://arxiv.org/abs/2308.06374


01

引言

大语言模型(Large Language Models, LLMs)已经席卷了知识表示(Knowledge Representation, KR)和整个世界,并且在一些自然语言处理任务上达到了和人类相媲美的性能。基于此,人们逐渐接受了这种存在于大语言模型中“参数化”的知识,也宣告了知识计算时代的到来。知识计算时代,KR中的推理任务被扩展为基于知识表示的知识计算任务。

这是知识表示领域迈出的一大步。长期以来,学者们将研究重点放在显式知识上,包括非结构化知识,如文本,和结构化知识,如知识图谱(Knowledge Graphs, KGs)。尤其是在二十一世纪初期RDF和OWL两个标准的出现,使得知识图谱成为一种主流的大规模知识库,同时支持基于逻辑的图推理和基于图的学习。

大语言模型作为知识表示的一个发展拐点,将研究人员的目光从显示知识转向到了显示知识和参数化知识混合的方法上。作为显示知识代表的知识图谱,在参数化的语言模型背景下受到了广泛的研究,包括使用知识图谱增强BERT、RoBERTa,以及最近出现的生成式语言模型GPT等。相反,使用大语言模型反向去构造和完善知识图谱也进行了大量的探索,如使用大语言模型来进行知识图谱的补全。

本文深度地探讨了大语言模型出现后,在知识表示从显示表示迈向混合表示的过程中有争议的一些话题,并介绍了知识图谱和大语言模型结合的最新技术以及未来的机遇与挑战。

02

普遍争议的主题

显式知识和“参数”知识的结合使用在知识计算领域引起了多个讨论,本文将从支持者和怀疑者两个方面对一些共性问题进行讨论。

1.1 知识表示与推理

知识图谱提供了具有明确关系的知识的结构化表示,支持推理和推断。怀疑者认为大语言模型中“参数化”的知识是基于统计的,并不是真正的理解和推理,并且由于缺乏明确的知识表征,模型会生成看似合理但却荒谬的结果。另一方面,知识图谱和大语言模型的获得都需要极高的成本,但后者更加容易适配下游的任务,并将AI带入到了世界舞台的中央,因此参数化知识并不是大语言的唯一目标。综上,在知识表示和知识计算两个任务使用显式知识和“参数化”知识的比较中,知识表示更加偏向表达性和判定性的权衡,而知识计算更加偏向精确率和召回率之间的权衡。

1.2 高精度方法

知识图谱的成功在于其可以精确地提供关于实体的事实信息,如YAGO,可以提供95%以上的正确信息。同样知识图谱在用于生产环境时需要较高的精度,例如Google的Knowledge Vault未能成功落地也是因为其精度达不到要求的99%。目前基于BERT或GPT等的方法不能满足以上要求,这知识计算科学家仍然需要探索基于大语言模型的高精度的方法。

1.3 数值计算

人们普遍认为大语言模型需要具有处理数值的能力,对于语言模型来说,完成数值计算工作是一项具有挑战性的任务,该挑战同样适用于知识图谱补全任务。在基于Wikidata的数字事实来评估语言模型数值计算能力中,没有一个模型能准确地得到结果,尽管已有的模型在数值处理的能力上表现不俗,但考虑到数值具有不同的度量和类型,使得该任务难度进一步升级,因此,修改模型来处理数值的问题仍未被解决,以至于利用大语言模型来完成数值知识图谱的补全看起来是不现实的。

1.4 长尾知识

在知识计算任务中,存在的一个关键问题:大语言模型到底记住了多少的知识?在对大语言模型的调查过程中发现,使用Wikidata中随机的知识对模型进行测试时,模型的性能会急剧的恶化,尤其是在遇到长尾的实体时。这种情况的出现,究其原因就是在预训练过程中实体和关系出现的频率是不一样的,模型对长尾的信息是难以保持精准记忆的。相反,知识图谱在提供长尾实体的知识上具有天然的优势,因此可以进一步提升大语言模型在知识计算任务中的回忆能力。

1.5 偏见、公平等更多问题

批评者认为大语言模型会使训练数据中的偏见持续存在并放大,从而导致有偏见的输出。而支持者认为偏见不是大语言模型中所固有的特征,而是训练数据集中嵌入的社会偏见,他们强调了在训练数据中消除偏见和开发能够缓解偏见技术的重要性。知识图谱在构建过程中同样会嵌入“偏见”,并且会被运用到各种下游任务中。除了偏见和公平外,还有侵犯版权和错误信息等问题。与显式知识相比,大语言模型中“参数化”偏见知识更难以被去除或修改。

1.6 可解释性

在可解释性的场景中,知识图谱通常是首选的。对大语言模型持有怀疑态度的学者们认为:大模型是一个黑盒,缺乏可解释性,很难理解他们是如何产生结果的。但支持者们虽然承认了大模型可解释性差的问题,但却通过最近的一些研究,如注意力机制、模型内省等技术可以在一定程度提升模型的可解释性。思维链技术、问题解耦和答案归因等方法,是最近在大语言模型可解释性方法研究中的一些热点话题。

03

重点研究课题与挑战

e05df34a6118af488d9b83235567e90f.png

2.1 基于大语言模型的知识图谱技术:知识提取和规范化

实体解析与匹配

KG构建是一项复杂的任务,需要从广泛的来源收集和集成信息,包括结构化、半结构化和非结构化数据。传统的方法通常需要为不同的任务设计不同的模块进行信息的抽取与匹配,而通过大语言模型这一强力的工具,可以更方便地进行信息抽取任务。在实体解析与匹配中,大语言模型通常作为一种数据标注模块,为下游模块产生相关的训练语料。

从表格和文本数据中提取知识

从数据来源的角度来看,图谱中的实体通常来源于表格或者文本中。

其中根据在使用大语言模型提取表格数据中的一些尝试中发现,面临的挑战主要有三个:

1)将表格数据转化为序列;

2)表示和利用非文本的表格数据;

3)提取表格知识。

从文本中提取信息的方法统长包含以下4个任务:

1)命名实体识别;2)关系抽取;

3)事件抽取和;4)语义角色标注。

由于大语言模型强大的能力,使得其在小样本条件下仍有不俗的表现,但仍然存在以下的挑战:

1)从超长文本中有效的提取信息;

2)高覆盖率的信息抽取。

2.2 基于大语言模型的知识图谱技术:知识图谱的构建

链接预测

大语言模型在改善知识图谱构建中具有重要作用,本文首先讨论了链接预测任务,并转向最近的热门任务:从大语言模型中提取三元组。

除了传统的链接预测方法通常使用基于嵌入表示的方法外,还可以使用提示学习的方法,通过大语言模型进一步找到实体之间的链接。基于大语言模型的方法虽然可以很容易的进行链接预测,但仍然存在以下挑战与机遇:

1)大模型不能保证由于实体名称多样化带来的生成错误问题;

2)目前的评估方法对于大模型来说是不适用的,主要原因是计算成本太过高昂;

3)由于大语言模型是基于维基百科训练的,所以并不能知道,该结果是推理的结果还是大语言模型本身的记忆结果;

4)大语言模型在归纳链接预测任务中的作用本身是一个热门话题;

5)对于提示模板的构建是需要不断尝试的,尤其是在GPT-4这种模型背景下,完成该任务是昂贵的;

6)有效的预测策略的获取是一个有前景的研究方向;

7)大语言模型与基于嵌入的方法联合也是一个很强的研究方向。

从大语言模型中提取三元组

传统上,关系知识的检索和推理都依赖于符号知识库,最近,人们研究使用自监督的方法,如构造问答对、完形填空、提示工程等,从大语言模型中直接检索关系知识的能力。这种方法主要的挑战和机遇是:

1)由于实体名称的重复性,需要进行实体消歧;

2)由于大语言模型读长尾实体记忆的不精确性,导致产生错误的信息;

3)大语言模型面临着高精度的要求;

4)大语言模型的输出不提供出处,为核验该信息的准确性带来了信息的挑战。

2.3 基于大语言模型的知识图谱技术:本体模式的构建

从知识图谱中挖掘约束和规则

现有构建知识图谱的方法通常使用pipeline的方式,这种方法容易造成误差传播问题,通过引入自动化的规则和约束来限制构建图谱时错误信息的引入可以提升数据的质量。如何生成这些约束和规则是一个根本性的挑战,在此背景下,大语言模型带来了新的机遇:

1)从输入文本中提取上下文信息的能力;

2)在训练过程中使用上下文提取信息;

3)通过归纳推理生成新的规则。

4)理解词汇信息,协调同义词和一词多义现象;

5)提供规则的解释和生成候选以及反事实样例。

本体优化

本体优化包含很多主题:知识补全、错误知识检测和修复和知识规范化等,开发基于大语言模型的本体细化工具仍然存在以下挑战:

1)利用文本及其本体的图结构和逻辑;

2)结合符合推理和大语言模型推理。

本体对齐

单个本体的知识通常是不完整的,许多真实世界的应用通常依赖于跨领域的知识。本体对齐的主要挑战是评估基于大语言模型的本体对齐系统。

2.4 基于知识图谱的大语言模型

在大语言模型中使用知识图谱主要有以下几个方面:

1)知识图谱可以作为大语言模型的训练数据;

2)知识图谱中的三元组可以用于提示模板的构建;

3)知识图谱作为一种外部知识增强大语言模型。

基于知识图谱的语言模型(预)训练

由于自然语言文本本身可能只提供有限的信息覆盖,而知识图谱可以为语言模型提供结构化的事实知识,集成知识图谱的语言模型(预)训练方法,使得向模型注入世界知识和实时更新知识更加方便。这种融合了知识图谱信息的语言模型,在知识密集型QA任务上展示了具有竞争力的结果,证明了这种方法在提升语言模型的能力具有重要意义。

基于知识图谱的提示构建

目前使用知识图谱来丰富和微调提示模板,从而在提示的数量、质量和多样性上比手动的方法更具优势,已有方法证明了通过图谱构建的提示模板进行推理比传统方法更具竞争力,但目前该方法仍存在挑战与机遇:

1)生成上下文感知的写作提示,分析不同提示之间的关系,形成具有关联关系的提示模板。

2)动态生成和用户交互的提示模板,由于知识图谱提供了知识的透明表示,因此可以很容易地将从知识图谱生成的提示追溯到它们的底层源。

3)将知识图谱集成到提示模板中,增强模型生成内容的可行度。

4)知识图谱可以创建询问问题的提示,从而触发知识图谱复杂推理能力和中间推理步骤。

检索增强的方法

基于检索增强的方法对于大模型获取外部知识是重要的,尤其是针对长尾实体和特定领域训练中缺失的实体。目前的方法(如RAG,FiD)主要是考虑文本知识,最近也开始有方法使用图谱知识去增强大模型。在可见的未来,如果大规模知识图谱构造有比较可行的方法,图谱增强可能成为主流方案之一。检索增强是一个非常有前景的方向,主要挑战有:

1)统一知识编辑与检索增强的方法;

2)半参数化大语言模型;

3)支撑复杂推理。

04

展望

综上所述,我们总结了以下显式知识和“参数化”知识的融合的机会:

1. ­简便快捷的文本知识获取长久以来文字都是人类记录知识的主要方式,大语言模型使文本知识的获取及时可得,可以避免复杂的文本知识收集、表示、存储、和查询流程,将AI开发者从信息检索的依赖中解放出来。

2. 丰富的子任务知识:大语言模型可以简化传统知识工程流程,通过少量样本作为实例语言模型即可学会结构解析、实体识别、关系抽取等任务,因此可以快速构建大规模高质量的知识图谱。

3. 实现更好的语言理解:尽管大语言模型已经具有很好的语言理解能力,将显式知识与大语言模型中的“参数化”知识融合,有可能让模型具有更强的语言理解能力,实现更好的文本蕴含推理、文本梗概、以及一致文本生成等。

大语言模型的出现是知识图谱研究的一个重要转折点,尽管在如何结合他们的优势来进一步解决问题上仍然有待深入研究,但已经出现了令人兴奋的机会。对此,我们提出了以下建议:

1)不要因为研究范式的转变而丢弃知识图谱;

2)将你的研究方法与基于大模型的方法持续进行比较;

3)保持好奇,保持批判;

4)过去的已经过去了,让我们开始新的旅程。

以上就是本次分享的内容,谢谢。

71c0bf9b1a386873c30e2ac6dfb83912.gif

4b4ed23ac059ab5878b265f7494c7f0a.png

作者简介

INTRODUCTION

5656675a54c1d89b9261512176d6db79.gif

Jeff Pan

028784de0e8f9274806f45c9d88fac89.gif

爱丁堡大学终身教授

da91ef4ef0abaadf4ce8f08234454d32.gif

Jeff Pan教授,长江学者,爱丁堡大学终身教授,华为爱丁堡知识图谱实验室主任,华为英国首席搜索科学家,阿兰图灵研究院知识图谱主席。主页:http://knowledge-representation.org/j.z.pan/

a607596ba4d935c79154cb3bb7f1af18.png

作者简介

INTRODUCTION

e24714ff836ffd1a361da97212eac5d2.gif

陈矫彦

744951a9dd2d7fc1e5e5645db8e92719.gif

曼彻斯特大学终身制讲师

8631fe7408d7432ed17695276c8762e1.gif

陈矫彦博士,曼彻斯特大学计算机科学系终身制讲师,牛津大学计算机科学系兼职研究员。陈博士主要研究知识图谱、本体论、机器学习和神经符号人工智能,担任Transactions of Graph Data and Knowledge (TGDK)的副主编。个人主页:https://chenjiaoyan.github.io/

91e4c9e4bc4d8a25c6fcc8ad924a25ac.jpeg

作者简介

INTRODUCTION

413a0c00a546e397c83d70969a072424.gif

张文

3180c17557c03feb3d429507ba58ca30.gif

浙江大学特聘研究员

1b62420ad078a61f3258db8a14ab024a.gif

张文,浙江大学软件学院特聘研究员,研究方向为知识图谱、知识表示、知识推理。个人主页:https://person.zju.edu.cn/zhangwen

63ce2ffd3be848e1c0328cfde379aef2.jpeg

作者简介

INTRODUCTION

5b5140e97c67a20642f1f856ec628017.gif

闫智超

39d65594decd9610b4b4c3339b11b3c1.gif

山西大学博士

9fbd943767310e2d118587e62a91b60a.gif

闫智超:山西大学博士在读,主要研究方向为框架语义解析。主页:

https://scholar.google.com.hk/citations?user=Tb2o2nUAAAAJ&hl=zh-CN


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

a6afccc8ac8b56ada6f7d9b55f9ca351.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/110631.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【VLDB 2023】基于预测的云资源弹性伸缩框架MagicScaler,实现“高QoS,低成本”双丰收

开篇 近日,由阿里云计算平台大数据基础工程技术团队主导,与计算平台MaxCompute团队、华东师范大学数据科学与工程学院、达摩院合作,基于预测的云计算平台资源弹性伸缩框架论文《MagicScaler: Uncertainty-aware, Predictive Autoscaling 》被…

深度学习之反卷积

具体推理可以参考https://blog.csdn.net/zhsmkxy/article/details/107073350

SpringBoot中间件ElasticSearch

Elasticsearch是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的 全文搜索引擎 ,基于RESTful web 接口。 Elasticsearch 是用 Java 语言开发的,并作为 Apache 许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elastics…

【力扣每日一题】2023.8.24 统计参与通信的服务器

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目顾名思义,要我们统计参与通信的服务器,给我们一个二维矩阵,元素为1的位置则表示是一台服务器。 …

ChatGPT Prompting开发实战(二)

一、基于LangChain源码react来解析prompt engineering 在LangChain源码中一个特别重要的部分就是react,它的基本概念是,LLM在推理时会产生很多中间步骤而不是直接产生结果,这些中间步骤可以被用来与外界进行交互,然后产生new con…

Leetcode 易错题整理(一)5. 7. 11. 15. 33. 34

5. 最长回文子串 给你一个字符串 s,找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。 示例 1: 输入:s "babad" 输出:"bab" 解释:"aba&q…

4. 池化层相关概念

4.1 池化层原理 ① 最大池化层有时也被称为下采样。 ② dilation为空洞卷积,如下图所示。 ③ Ceil_model为当超出区域时,只取最左上角的值。 ④ 池化使得数据由5 * 5 变为3 * 3,甚至1 * 1的,这样导致计算的参数会大大减小。例如1080P的电…

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。 加载ImageNet预训练的基础模型 from tensorflow import kerasbase_model keras.applications.VGG16(weights"imagenet",input_shape(224, 224, 3),include_t…

基于数据湖的多流拼接方案-HUDI实操篇

目录 一、前情提要 二、代码Demo (一)多写问题 (二)如果要两个流写一个表,这种情况怎么处理? (三)测试结果 三、后序 一、前情提要 基于数据湖对两条实时流进行拼接&#xff0…

Viobot基本功能使用及介绍

设备拿到手当然是要先试一下效果的,这部分可以参考本专栏的第一篇 Viobot开机指南。 接下来我们就从UI开始熟悉这个产品吧! 1.状态 设备上电会自动运行它的程序,开启了一个服务器,上位机通过连接这个服务器连接到设备&#xff0c…

面试现场表现:展示你的编程能力和沟通技巧

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

成功项目风险预防可控的5个重点

成功的项目往往重视项目风险的预防和管控,这样有利于可能风险的及时控制和解决,将其不利影响降到最小。如果不重视对风险的预防和管控,不及时发现和处理项目风险,那么项目风险往往会为我们带来意想不到的不利后果,往往…

【IMX6ULL驱动开发学习】12.Linux SPI驱动实战:DAC驱动设计流程

基础回顾: 【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程_阿龙还在写代码的博客-CSDN博客 【IMX6ULL驱动开发学习】11.Linux之SPI驱动_阿龙还在写代码的博客-CSDN博客 一、编写驱动 查看芯片手册,有两种DAC数据格式&a…

安防监控视频平台EasyCVR视频汇聚平台调用接口出现跨域现象的问题解决方案

视频监控汇聚EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTSP、RTMP、FLV、HLS、WebRTC等格式的视…

08 通过从 库1 复制 *.ibd 到 库2 导致 mysql 启动报错

前言 呵呵 最近同事有这样的一个需求 需要将 库1 的一张表 复制到 库2 然后 我想到了 之前一直使用的通过复制这个库的 data 文件来进行数据迁移的思路, 是需要复制这个 库对应的 data 目录下的数据文件, 以及 ibdata1 文件 然后 我又在想 这里的场景能否也使用这里的额方式…

重生c++系列之类与对象(中篇)

好的继上期,我们今天带来c类与对象系列的继续学习。 类的6个默认成员函数 如果一个类中什么成员都没有,简称为空类。 空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下6个默认成员 函数。 …

Hbase文档--架构体系

阿丹: 基础概念了解之后了解目标知识的架构体系,就能事半功倍。 架构体系 关键组件介绍: HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起…

将NiceGUI应用程序打包成EXE文件

将NiceGUI应用程序打包成EXE文件 NiceGUI是一个简单易用的Python库,用于创建基于文本的用户界面。在本教程中,我们将学习如何将NiceGUI应用程序打包成可执行文件(EXE)。 步骤1:安装依赖项 首先,我们需要…

Oracle 本地客户端连接远程 Oracle 服务端并使用 c# 连接测试

这里写自定义目录标题 前言Oracle 客户端安装先决条件下载 Oracle 客户端Oracle 客户端环境变量配置 PL/SQLPL/SQL 下载PL/SQL 配置 配置远程连接tnsnames.ora 文件配置 使用 PL/SQL 连接远程数据库使用 C# 远程访问 Oracle 数据库结语 前言 最近有一个需要使用本地的 Oracle …

融云 CallPlus SDK 上线!1V1 音视频、远程服务类应用的实现利器

点击报名,9 月 21 日融云直播课 近期,融云新一代音视频通话场景化 SDK CallPlus 将正式上线!关注【融云全球互联网通信云】了解更多 融云 CallPlus 完整封装了拨打、振铃、接听、挂断等整套呼叫流程,支持一对一及群组多人音视频通…