吴恩达深度学习——超参数调试

内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。

文章目录

  • 超参数调试
    • 调试
    • 选择范围
  • Batch归一化
    • 公式
    • 整合
  • Softmax

超参数调试

调试

目前学习的一些超参数有学习率 α \alpha α(最重要)、动量梯度下降法 β \beta β(次重要)、Adam优化算法 β 1 \beta_1 β1 β 2 \beta_2 β2 ϵ \epsilon ϵ(这三个参数一般默认)、层数layers(次次重要)、不同层中的隐藏单元数量hidden units(次重要)、学习率衰减learning rate decay(次次重要)、小批量大小mini-batch size(次重要)。在这里插入图片描述

对于超参数的取值,如果有两个超参数,可以画一个网格,然后随机取值;如果有三个超参数,画一个立方体随机取值。

另外,可以从粗到细取值。在某个范围内取的超参数明显比周围的效果要好,那么可以在这个范围内细分取值。

在这里插入图片描述
在这里插入图片描述

选择范围

在这里插入图片描述

假设学习率在0.0001~1之间,那么不应该随机均匀取值,否则大部分数据落在0.1~1上,因此,使用对数标尺搜索超参数。 0.0001 = 1 0 − 4 , 1 = 1 0 0 , r ∈ [ − 4 , 0 ] 0.0001=10^{-4},1=10^0,r\in[-4,0] 0.0001=104,1=100,r[4,0]。在 r r r的范围内随机取值,然后使用对数重新映射到对数标尺上。

Batch归一化

在这里插入图片描述
对于单层神经网络,对参数 x x x归一化,可以方便算法优化。
在这里插入图片描述
对于多层神经网络比如 w [ 3 ] w^{[3]} w[3],是否可以对参数 a [ 2 ] a^{[2]} a[2]归一化? a [ 2 ] a^{[2]} a[2]来自于 z [ 2 ] z^{[2]} z[2],所以对 z [ 2 ] z^{[2]} z[2]进行归一化,称为Batch归一化。

公式

  1. 计算均值:对于给定的mini - batch数据(以神经网络某层输入 z ( 1 ) , z ( 2 ) , ⋯ , z ( m ) z^{(1)}, z^{(2)}, \cdots, z^{(m)} z(1),z(2),,z(m)为例, m m m是mini - batch大小),计算其均值 μ \mu μ μ = 1 m ∑ i = 1 m z ( i ) \mu=\frac{1}{m}\sum_{i = 1}^{m}z^{(i)} μ=m1i=1mz(i)
  2. 计算方差:计算mini - batch数据的方差 σ 2 \sigma^2 σ2 σ 2 = 1 m ∑ i = 1 m ( z ( i ) − μ ) 2 \sigma^2=\frac{1}{m}\sum_{i = 1}^{m}(z^{(i)} - \mu)^2 σ2=m1i=1m(z(i)μ)2
  3. 归一化:对每个数据点 z ( i ) z^{(i)} z(i)进行归一化,得到 z n o r m ( i ) = z ( i ) − μ σ 2 + ϵ z_{norm}^{(i)}=\frac{z^{(i)} - \mu}{\sqrt{\sigma^2+\epsilon}} znorm(i)=σ2+ϵ z(i)μ,其中 ϵ \epsilon ϵ是一个很小的正数(如 1 0 − 8 10^{-8} 108),防止分母为零。
  4. 尺度变换和偏移:引入可学习参数 γ \gamma γ(尺度参数)和 β \beta β(偏移参数),对归一化后的数据进行变换: z ^ ( i ) = γ z n o r m ( i ) + β \hat{z}^{(i)}=\gamma z_{norm}^{(i)}+\beta z^(i)=γznorm(i)+β
    如果 γ = σ 2 + ϵ , β = μ \gamma=\sqrt{\sigma^2+\epsilon},\beta=\mu γ=σ2+ϵ β=μ,有 z ^ ( i ) \hat{z}^{(i)} z^(i)= z ( i ) z^{(i)} z(i) γ 、 β \gamma、\beta γβ是新引入的超参数。

整合

在这里插入图片描述

输入层有 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3三个输入特征,经过两层隐藏层,每层有两个神经元,最终输出 y ^ \hat{y} y^。神经元中 z [ l ] z^{[l]} z[l]表示第 l l l层的线性输出, a [ l ] a^{[l]} a[l]表示第 l l l层的激活输出。

在每一层的线性输出 z [ l ] z^{[l]} z[l]之后进行Batch归一化(BN)操作,引入可学习参数 β [ l ] \beta^{[l]} β[l] γ [ l ] \gamma^{[l]} γ[l],归一化后再经过激活函数得到 a [ l ] a^{[l]} a[l]。图中红色波浪线部分表示Batch归一化的处理位置。

在神经网络中,某层的线性输出原本为 z = W x + b z = Wx + b z=Wx+b 。当进行Batch归一化时,由于后续的 β \beta β(偏移参数)也起到了类似 b b b的添加偏移量的作用,所以从效果上看, b b b的作用被 β \beta β替代了。也就是说, b b b对输入数据所做的添加偏移量的操作,在Batch归一化后的 β \beta β操作中可以等效实现,因此在实际计算中可以将 b b b消去,简化计算过程。

在实际应用中,由于样本是mini-Batch,因此,归一化时可以使用指数加权平均来计算 μ \mu μ σ 2 \sigma^2 σ2

Softmax

之前的分类采用二分分类,这种分类只有0和1两种标记。如果我们需要更多的标记,可以使用Softmax回归来识别多种分类中的一个。

在这里插入图片描述

对于识别猫、狗、小鸡以及其他类别,总共有 C = 4 C = 4 C=4个类别,分别用0(其他)、1(猫)、2(狗)、3(小鸡)表示。下方的神经网络架构,输入 X X X经过多个隐藏层,最终输出层有 n [ L ] = 4 n^{[L]} = 4 n[L]=4个神经元,分别对应输入图像属于“其他”“猫”“狗”“小鸡”这四类的概率 P ( o t h e r ∣ x ) P(other|x) P(otherx) P ( c a t ∣ x ) P(cat|x) P(catx) P ( d o g ∣ x ) P(dog|x) P(dogx) P ( b c l ∣ x ) P(bcl|x) P(bclx),输出 y ^ \hat{y} y^代表预测的类别。

对于 z [ l ] = W [ l ] a [ l − 1 ] + b [ l ] z^{[l]} = W^{[l]}a^{[l - 1]}+b^{[l]} z[l]=W[l]a[l1]+b[l] ,使用Softmax作为激活函数。先对 z [ l ] z^{[l]} z[l]进行指数运算得到 t = e z [ l ] t = e^{z^{[l]}} t=ez[l] ,然后通过Softmax公式计算激活输出 a [ l ] a^{[l]} a[l] a [ l ] = e z [ l ] ∑ j = 1 4 t i a^{[l]}=\frac{e^{z^{[l]}}}{\sum_{j = 1}^{4}t_{i}} a[l]=j=14tiez[l] ,其元素 a i [ l ] = t i ∑ j = 1 4 t i a_{i}^{[l]}=\frac{t_{i}}{\sum_{j = 1}^{4}t_{i}} ai[l]=j=14titi ,将线性输出转换为概率分布。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11128.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Alibaba开发规范_编程规约之命名风格

文章目录 命名风格的基本原则1. 命名不能以下划线或美元符号开始或结束2. 严禁使用拼音与英文混合或直接使用中文3. 类名使用 UpperCamelCase 风格,但以下情形例外:DO / BO / DTO / VO / AO / PO / UID 等4. 方法名、参数名、成员变量、局部变量使用 low…

从0开始,来看看怎么去linux排查Java程序故障

一,前提准备 最基本前提:你需要有liunx环境,如果没有请参考其它文献在自己得到local建立一个虚拟机去进行测试。 有了虚拟机之后,你还需要安装jdk和配置环境变量 1. 安装JDK(以OpenJDK 17为例) 下载JDK…

智能园区管理系统助力企业安全与效率双提升的成功案例分析

内容概要 在当今迅速发展的商业环境中,企业面临着资产管理、风险控制和运营效率提高等多重挑战。为了应对这些挑战,智能园区管理系统应运而生,为企业提供了全新的解决方案。例如,快鲸智慧园区(楼宇)管理系…

nacos 配置管理、 配置热更新、 动态路由

文章目录 配置管理引入jar包添加 bootstrap.yaml 文件配置在application.yaml 中添加自定义信息nacos 配置信息 配置热更新采用第一种配置根据服务名确定配置文件根据后缀确定配置文件 动态路由DynamicRouteLoaderNacosConfigManagerRouteDefinitionWriter 路由配置 配置管理 …

Linux-CentOS的yum源

1、什么是yum yum是CentOS的软件仓库管理工具。 2、yum的仓库 2.1、yum的远程仓库源 2.1.1、国内仓库 国内较知名的网络源(aliyun源,163源,sohu源,知名大学开源镜像等) 阿里源:https://opsx.alibaba.com/mirror 网易源:http://mirrors.1…

16.[前端开发]Day16-HTML+CSS阶段练习(网易云音乐五)

完整代码 网易云-main-left-rank&#xff08;排行榜&#xff09; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name&q…

【ts + java】古玩系统开发总结

src别名的配置 开发中文件和文件的关系会比较复杂&#xff0c;我们需要给src文件夹一个别名吧 vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import path from path// https://vitejs.dev/config/ export default defineConfig({pl…

使用Pygame制作“俄罗斯方块”游戏

1. 前言 俄罗斯方块&#xff08;Tetris&#xff09; 是一款由方块下落、行消除等核心规则构成的经典益智游戏&#xff1a; 每次从屏幕顶部出现一个随机的方块&#xff08;由若干小方格组成&#xff09;&#xff0c;玩家可以左右移动或旋转该方块&#xff0c;让它合适地堆叠在…

小程序设计和开发:什么是竞品分析,如何进行竞品分析

一、竞品分析的定义 竞品分析是指对竞争对手的产品进行深入研究和比较&#xff0c;以了解市场动态、发现自身产品的优势和不足&#xff0c;并为产品的设计、开发和营销策略提供参考依据。在小程序设计和开发中&#xff0c;竞品分析可以帮助开发者了解同类型小程序的功能、用户体…

Vue简介

目录 Vue是什么&#xff1f;为什么要使用Vue&#xff1f;Vue的三种加载方式拓展&#xff1a;什么是渐进式框架&#xff1f; Vue是什么&#xff1f; Vue是一套用于构建用户界面的渐进式 JavaScript (主张最少)框架 &#xff0c;开发者只需关注视图层。另一方面&#xff0c;当与…

Linux多路转接poll

Linux多路转接poll 1. poll() poll() 结构包含了要监视的 event 和发生的 event &#xff0c;接口使用比 select() 更方便。且 poll 并没有最大数量限制&#xff08;但是数量过大后性能也是会下降&#xff09;。 2. poll() 的工作原理 poll() 不再需要像 select() 那样自行…

C++【深入底层,手撕vector】

vector是向量的意思&#xff0c;看了vector的底层实现之后&#xff0c;能够很明确的认识到它其实就是我们经常使用的顺序表。在我们的认知中&#xff0c;顺序表会有一个数组、数据的size以及容量的大小。vector作为一个向量容器&#xff0c;它可以存放任意类型的数据。所以在实…

基于FPGA的BT656编解码

概述 BT656全称为“ITU-R BT.656-4”或简称“BT656”,是一种用于数字视频传输的接口标准。它规定了数字视频信号的编码方式、传输格式以及接口电气特性。在物理层面上,BT656接口通常包含10根线(在某些应用中可能略有不同,但标准配置为10根)。这些线分别用于传输视频数据、…

关于系统重构实践的一些思考与总结

文章目录 一、前言二、系统重构的范式1.明确目标和背景2.兼容屏蔽对上层的影响3.设计灰度迁移方案3.1 灰度策略3.2 灰度过程设计3.2.1 case1 业务逻辑变更3.2.2 case2 底层数据变更&#xff08;数据平滑迁移&#xff09;3.2.3 case3 在途新旧流程兼容3.2.4 case4 接口变更3.2.5…

Microsoft Power BI:融合 AI 的文本分析

Microsoft Power BI 是微软推出的一款功能强大的商业智能工具&#xff0c;旨在帮助用户从各种数据源中提取、分析和可视化数据&#xff0c;以支持业务决策和洞察。以下是关于 Power BI 的深度介绍&#xff1a; 1. 核心功能与特点 Power BI 提供了全面的数据分析和可视化功能&…

【机器学习】自定义数据集 ,使用朴素贝叶斯对其进行分类

一、贝叶斯原理 贝叶斯算法是基于贝叶斯公式的&#xff0c;其公式为&#xff1a; 其中叫做先验概率&#xff0c;叫做条件概率&#xff0c;叫做观察概率&#xff0c;叫做后验概率&#xff0c;也是我们求解的结果&#xff0c;通过比较后验概率的大小&#xff0c;将后验概率最大的…

AMS仿真方法

1. 准备好verilog文件。并且准备一份.vc文件&#xff0c;将所有的verilog file的路径全部写在里面。 2. 将verilog顶层导入到virtuoso中&#xff1a; 注意.v只要引入顶层即可。不需要全部引入。实际上顶层里面只要包含端口即可&#xff0c;即便是空的也没事。 引入时会报warni…

OpenAI o3-mini全面解析:最新免费推理模型重磅发布

引言 2025年1月31日&#xff0c;OpenAI重磅发布全新推理模型o3-mini。这款模型作为OpenAI推理系列的最新突破&#xff0c;不仅在性能和性价比方面实现跨越式提升&#xff0c;更是首次全面开放免费使用。这一重大举措彰显了OpenAI在人工智能技术普及和成本优化领域的创新决心。…

文件读写操作

写入文本文件 #include <iostream> #include <fstream>//ofstream类需要包含的头文件 using namespace std;void test01() {//1、包含头文件 fstream//2、创建流对象ofstream fout;/*3、指定打开方式&#xff1a;1.ios::out、ios::trunc 清除文件内容后打开2.ios:…

TensorFlow 示例摄氏度到华氏度的转换(一)

TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换&#xff0c;可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 …