R语言绘图相关函数(含实例)

目录

plot:可用于创建多种类型的图形

dev.new():新建画板

hist:绘制直方图

dotchart:绘制点图的函数

pie:绘制饼图

 pair:绘制散点图矩阵

boxplot:绘制箱线图

scatterplot3D: 绘制三维散点图

par:修改图形设备的参数

title:设置标题

axis:自定义坐标轴的外观和属性

rug:添加轴密度

grid:添加网格

abline:添加直线

lines:添加直线

text:添加标签

legend:添加图例


plot:可用于创建多种类型的图形

plot(x, y, type = "p", ...)

参数

  • x:要绘制的数据的x轴坐标。
  • y:要绘制的数据的y轴坐标。
  • type:要绘制的图形类型。常见的值包括:
    • "p":散点图(默认值)。
    • "l":线图。
    • "b":线图和散点图(同时显示)。
    • "h":步进图。
    • "s":阶梯图。
    • "n":不绘制图形,只创建绘图区域。

(1)绘制散点图 

x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 6, 8, 10)plot(x, y, type = "p", main = "Scatter Plot", xlab = "X", ylab = "Y")

 (2)绘制线图

x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 6, 8, 10)plot(x, y, type = "l", main = "Line Plot", xlab = "X", ylab = "Y")

 (3)绘制柱状图

x <- c("A", "B", "C", "D")
y <- c(10, 15, 7, 12)plot(x, y, type = "b", main = "Bar Chart", xlab = "Categories", ylab = "Values")
#这里会出现报错
#plot()函数默认将输入数据视为数值型,在尝试绘制非数值型数据时会导致错误
#可以使用barplot()x <- c("A", "B", "C", "D")
y <- c(10, 15, 7, 12)barplot(y, names.arg = x, main = "Bar Chart", xlab = "Categories", ylab = "Values")

dev.new():新建画板

> dev.new()
NULL
> x <- c("A", "B", "C", "D")
> y <- c(10, 15, 7, 12)
> 
> barplot(y, names.arg = x, main = "Bar Chart", xlab = "Categories", ylab = "Values")
> 
> 

hist:绘制直方图

参数

  • x:要创建直方图的数据向量或数值矩阵。
  • breaks:用于控制直方图的分箱数目。可以是一个整数来指定分箱的数量,也可以是一个向量来指定分箱的边界。
  • freq:一个逻辑值,指示是否绘制直方图的频率(默认为TRUE)。如果设置为FALSE,则绘制密度图。
  • probability:一个逻辑值,指示是否绘制概率密度直方图(默认为FALSE)。如果设置为TRUE,则纵轴将标准化为表示密度而不是计数。(必要时要将prob=TRUE,这样折线才明显)
  • include.lowest:一个逻辑值,指示是否包含第一个分箱区间的左边界(默认为TRUE)。
  • right:一个逻辑值,指示分箱区间是否包含右边界,默认为TRUE。如果设置为FALSE,则分箱区间是左开右闭的。
  • density:一个逻辑值,指示是否绘制概率密度线(默认为NULL)。
  • angle:控制直方图的画板角度,默认为45度。
  • col:直方图的填充颜色。
  • border:直方图的边框颜色。
  • main:直方图的标题。
  • xlab:x轴的标签。
  • ylab:y轴的标签。
# 创建一个向量作为示例数据
data <- c(22, 34, 16, 28, 30, 20, 24, 18, 21, 31)# 使用一些常用参数来自定义直方图的外观
hist(data,breaks = 5,  # 分成5个分箱col = "blue",  # 设置直方图的填充颜色为蓝色border = "white",  # 设置直方图的边界颜色为白色main = "Histogram",  # 设置直方图的标题xlab = "Values",  # 设置x轴标签ylab = "Frequency"  # 设置y轴标签
)

dotchart:绘制点图的函数

参数

  • x: 表示要绘制点图的数值向量。
  • labels: 表示与每个数值对应的类别名称的向量。
  • groups: 表示对数据进行分组的因子或向量。可以根据分组对点图进行着色。
  • color: 表示点的颜色。可以是一个预定义的颜色名称或颜色代码。
  • pch: 表示点的形状。可以是一个整数或字符,代表不同的形状。
  • cex: 表示点的大小。可以是一个数值,指定点的放大倍数。
  • main: 表示点图的标题。
  • xlab: 表示x轴的标签。
  • ylab: 表示y轴的标签。
  • xlim: 表示x轴的范围。
  • ylim: 表示y轴的范围。
# 创建数据
categories <- c("Category A", "Category B", "Category C", "Category D")
values <- c(10, 15, 7, 12)# 使用dotchart绘制点图
dotchart(values, labels = categories, main = "Dot Chart", xlab = "Values")

pie:绘制饼图

参数

  • x: 表示要绘制饼图的数值向量。
  • labels: 表示与每个数值对应的类别名称的向量。如果指定了该参数,那么标签将显示在饼图中的每个扇区旁边。
  • main: 表示饼图的标题。
  • col: 表示饼图的颜色向量。可以是一个预定义的颜色名称向量或自定义颜色代码向量。
  • border: 表示饼图扇区的边界颜色。可以是一个颜色名称或颜色代码。
  • clockwise: 表示饼图绘制的方向。默认为TRUE,表示顺时针绘制;设为FALSE时表示逆时针绘制。
  • init.angle: 表示饼图开始绘制的角度,默认为90度,即从12点钟方向开始绘制。
  • labels.dist: 表示标签离饼图的距离。可以是一个数值,单位为“像素”(px),或一个比例。
  • labels.bg: 表示标签的背景色。可以是一个颜色名称或颜色代码,用于填充标签的背景。
  • radius: 表示饼图的半径,可以是一个数值或一个比例。

 pair:绘制散点图矩阵

参数

  • x: 数据框或矩阵,包含要绘制散点图矩阵的变量。
  • labels: 变量名的向量,用于显示在散点图矩阵中每个小图的轴标签上。
  • pch: 散点的形状,默认为1(圆点)。可以是一个整数或字符向量,用于指定不同形状的点。
  • col: 散点的颜色,默认为黑色。可以是一个颜色名称或颜色代码向量,用于指定不同颜色的点。
  • bg: 散点的填充颜色,默认为空。可以是一个颜色名称或颜色代码向量,用于指定点的填充颜色。
  • cex: 散点的大小,默认为1。可以是一个数值或数值向量,用于指定不同大小的点。
  • main: 散点图矩阵的主标题。
  • sub: 散点图矩阵的副标题。
  • lower.panel: 一个函数,用于自定义非对角线上每个小图的绘制内容。
  • upper.panel: 一个函数,用于自定义非对角线上每个小图的绘制内容。
  • diag.panel: 一个函数,用于自定义对角线上每个小图的绘制内容。
# 创建数据
data <- iris[, 1:4]   # 使用鸢尾花数据集的前四列作为示例数据# 使用pair()绘制散点图矩阵
pairs(data)

boxplot:绘制箱线图

  • x:要创建箱线图的数据向量或数值矩阵。
  • horizontal:一个逻辑值,指示是否绘制水平箱线图(默认为FALSE)。如果设置为TRUE,则绘制水平箱线图。
  • notch:一个逻辑值,指示是否绘制缺口箱线图(默认为FALSE)。如果设置为TRUE,则绘制缺口箱线图。
  • varwidth:一个逻辑值,指示是否根据箱子的样本数目调整箱子的宽度(默认为FALSE)。如果设置为TRUE,则根据样本数目调整箱子的宽度。
  • outline:一个逻辑值或字符向量,指示是否绘制异常值的点或字符(默认为TRUE)。如果设置为FALSE,则不绘制异常值。
  • col:箱线图的颜色。
  • border:箱线图的边框颜色。
  • main:箱线图的标题。
  • xlab:x轴的标签。
  • ylab:y轴的标签。
# 创建一个向量作为示例数据
data <- c(22, 34, 16, 28, 30, 20, 24, 18, 21, 31)# 使用一些常用参数来自定义箱线图的外观
boxplot(data,col = "blue",  # 设置箱线图的颜色为蓝色border = "white",  # 设置箱线图的边框颜色为白色main = "Boxplot",  # 设置箱线图的标题xlab = "Data",  # 设置x轴标签ylab = "Values",  # 设置y轴标签notch = TRUE  # 绘制缺口箱线图
)

 将notch参数设置为FALSE,并使用out参数指定了两个异常值(10和40)

# 创建一个向量作为示例数据
data <- c(22, 34, 16, 28, 30, 20, 24, 18, 21, 31)# 使用notch=FALSE和带有异常值的out参数
boxplot(data,col = "blue",  # 设置箱线图的颜色为蓝色main = "Boxplot",  # 设置箱线图的标题xlab = "Data",  # 设置x轴标签ylab = "Values",  # 设置y轴标签notch = FALSE,  # 不绘制缺口箱线图out = c(10, 40)  # 指定异常值
)

scatterplot3D: 绘制三维散点图

常用参数

  • xyz:要绘制的数据点的三个变量。
  • color:指定散点的颜色。可以是一个字符向量或颜色名称。例如,"blue"表示蓝色,"#FF0000"表示红色。
  • pch:指定散点的形状。可以是一个整数或字符。例如,16表示实心圆,17表示实心三角形。
  • main:设置散点图的标题。
  • xlabylabzlab:设置x轴、y轴和z轴的标签。
  • type:指定绘图类型。默认值为"p"表示散点图,也可以选择其他类型如"l"表示连线图。
  • lty:指定连线的类型。默认值为"solid"表示实线,也可以选择其他类型如"dashed"表示虚线。
  • thetaphi:控制视角的角度,用于旋转和调整观察者的视图。
  • box:设置是否绘制包围盒。默认值为TRUE表示绘制边框,FALSE表示不绘制。
# 创建三个变量作为示例数据
x <- c(1, 2, 3, 4, 5)
y <- c(6, 7, 8, 9, 10)
z <- c(11, 12, 13, 14, 15)# 绘制三维散点图
scatterplot3d(x, y, z,color = "blue",  # 设置散点的颜色为蓝色pch = 16,  # 设置散点的形状为实心圆main = "3D Scatter Plot",  # 设置图标题xlab = "X",  # 设置x轴标签ylab = "Y",  # 设置y轴标签zlab = "Z"  # 设置z轴标签
)

par:修改图形设备的参数

常见参数

  • mfrow:用于设置绘图区域的布局,即将多个图形组织在一个网格中。例如,par(mfrow = c(2, 2))表示将画布分成2行2列,以便绘制4个图形。
  • mar:用于设置绘图区域的边距。默认值为c(5, 4, 4, 2) + 0.1,分别代表下、左、上、右的边距。
  • oma:用于设置整个图形区域的边距。默认值为c(0, 0, 2, 0),分别代表下、左、上、右的边距。
  • mfcol:类似于mfrow,用于设置绘图区域的布局,但是按列来组织图形。例如,par(mfcol = c(2, 2))表示将画布分成2列2行,以便绘制4个图形。
  • mgp:用于设置刻度标签与轴线之间的距离、刻度标签与轴线之间的距离以及刻度线与轴线之间的距离。默认值为c(3, 1, 0)
  • cex.axis:用于设置坐标轴标签的字体大小。
  • cex.lab:用于设置轴标题的字体大小。
  • font:用于设置绘图区域中的字体类型。默认值为1表示标准字体。
  • family:用于设置字体系列,比如"serif"表示衬线字体,"sans"表示无衬线字体。

 (1)设置绘制区域布局

# 将画布分成2行2列,以便绘制4个图形
par(mfrow = c(2, 2))

 (2)设置绘图区域边距

# 设置下、左、上、右的边距分别为1、2、1、2
par(mar = c(1, 2, 1, 2))

(3)设置整个图形区域的边距

# 设置下、左、上、右的边距分别为1、1、1、1
par(oma = c(1, 1, 1, 1))

(4)设置刻度标签、轴标题和字体大小

# 设置刻度标签、轴标题的字体大小为1.5倍原始大小
par(cex.axis = 1.5, cex.lab = 1.5)

title:设置标题

参数

  1. main:指定主标题的文本内容。
  2. sub:指定副标题的文本内容。
  3. xlab:指定x轴标题的文本内容。
  4. ylab:指定y轴标题的文本内容。
  5. line:指定标题相对于图形的位置。默认值为0.5,表示居中放置。负值将标题放置在图形外部,正值将标题放置在图形内部。
  6. col.main:指定主标题的文字颜色。
  7. col.sub:指定副标题的文字颜色。
  8. col.lab:指定x轴和y轴标题的文字颜色。
  9. cex.main:指定主标题的字体缩放系数,用于调整字体大小。
  10. cex.sub:指定副标题的字体缩放系数,用于调整字体大小。
  11. cex.lab:指定x轴和y轴标题的字体缩放系数,用于调整字体大小。
  12. font.main:指定主标题的字体样式,默认为1表示标准字体。其他可用的字体样式有"bold"(粗体)、"italic"(斜体)等。
  13. font.sub:指定副标题的字体样式。
  14. font.lab:指定x轴和y轴标题的字体样式。
title(main = "Scatter Plot", sub = "Data Analysis", xlab = "X-axis", ylab = "Y-axis",col.main = "blue",col.sub = "red",col.lab = "green",cex.main = 1.5,cex.sub = 1,cex.lab = 1.2,font.main = 2,font.sub = "italic",font.lab = 3
)

axis:自定义坐标轴的外观和属性

axis(side, at, labels, pos, tick, line, lty, lwd, col, cex.axis, font, ...)

参数

  • side:指定要修改的坐标轴(1=下轴,2=左轴,3=上轴,4=右轴)。
  • at:指定刻度线的位置。
  • labels:指定刻度标签的文本内容。
  • pos:指定轴线和刻度线的位置(通常与at参数一起使用)。
  • tick:控制是否显示刻度线。
  • line:控制轴线和刻度线的长度。
  • lty:控制轴线和刻度线的线型。
  • lwd:控制轴线和刻度线的线宽。
  • col:控制轴线和刻度线的颜色。
  • cex.axis:控制刻度标签的字体缩放系数。
  • font:控制刻度标签的字体样式。
# 自定义x轴
axis(side = 1, at = c(1, 2, 3, 4), labels = c("A", "B", "C", "D"), pos = 0, tick = TRUE, line = -0.5, lty = "dashed", lwd = 2, col = "blue", cex.axis = 1.2, font = 2)# 自定义y轴
axis(side = 2, at = c(0, 5, 10, 15), labels = c("Low", "Medium", "High", "Very High"), pos = 0, tick = TRUE, line = -0.5, lty = "dotted", lwd = 1.5, col = "red", cex.axis = 1, font = 3)

rug:添加轴密度

rug(x, side = 1, ticksize = 0.03, line = NULL, lty = NULL, lwd = NULL, col = NULL, ...)

参数

  • x:指定要在坐标轴上绘制轴密度标记的值。
  • side:指定轴密度标记的位置(1=下轴,2=左轴,3=上轴,4=右轴)。
  • ticksize:指定轴密度标记的大小。
  • line:指定轴密度标记的位置(通常与x参数一起使用)。
  • lty:控制轴密度标记的线型。
  • lwd:控制轴密度标记的线宽。
  • col:控制轴密度标记的颜色。
# 在散点图上添加轴密度标记
plot(x, y)
rug(x, side = 1, ticksize = 0.03, col = "blue")# 在直方图上添加轴密度标记
hist(x)
rug(x, side = 1, ticksize = 0.03, col = "red")# 在密度图上添加轴密度标记
plot(density(x))
rug(x, side = 1, ticksize = 0.03, col = "green")

grid:添加网格

  • nx:指定网格线在x轴上的数量。
  • ny:指定网格线在y轴上的数量。
  • col:设置网格线的颜色。
  • lty:设置网格线的类型。
  • lwd:设置网格线的宽度。
# 添加默认的灰色虚线网格线
plot(x, y)
grid()# 添加自定义颜色、线型和线宽的网格线
plot(x, y)
grid(col = "blue", lty = "dashed", lwd = 1)# 添加指定数量的网格线
plot(x, y)
grid(nx = 5, ny = 5)

abline:添加直线

abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL, coef = NULL, ...)
  • a:直线的截距。
  • b:直线的斜率。
  • h:添加水平直线,指定y轴上的值。
  • v:添加垂直直线,指定x轴上的值。
  • reg:添加回归线,使用回归模型的结果。
  • coef:添加自定义系数的直线。
# 添加斜率为1、截距为0的直线
plot(x, y)
abline(a = 0, b = 1)# 添加水平直线
plot(x, y)
abline(h = 5, col = "red")# 添加垂直直线
plot(x, y)
abline(v = 3, col = "blue")# 添加回归线(使用线性回归模型的结果)
plot(x, y)
#lm() 函数用于拟合线性回归模型
#y ~ x 表示以 x 为自变量,y 为因变量进行拟合
fit <- lm(y ~ x)
abline(reg = fit, col = "green")# 添加自定义系数的直线
plot(x, y)
abline(a = 2.5, b = -0.5, col = "purple")

lines:添加直线

  • x:指定线条的 x 坐标值。
  • y:指定线条的 y 坐标值。
  • type:指定线条的类型,如 "l"(直线)、"b"(带有下垂直线段的折线)、"o"(带有上垂直线段的折线)、"s"(步进函数)、"h"(阶梯函数)等。
  • lty:指定线条的线型。
  • lwd:指定线条的宽度。
  • col:指定线条的颜色。
# 绘制直线
plot(x, y)
lines(x = c(1, 2, 3), y = c(2, 4, 3), col = "blue")# 绘制折线
plot(x, y)
lines(x = c(1, 2, 3, 4), y = c(2, 4, 3, 5), type = "b", col = "red")# 绘制阶梯函数
plot(x, y)
lines(x = c(1, 2, 3, 4), y = c(2, 4, 3, 5), type = "h", col = "green")# 绘制自定义线型和宽度的线条
plot(x, y)
lines(x, y, lty = 2, lwd = 2, col = "purple")

text:添加标签

参数

  • x:指定标签的 x 坐标。
  • y:指定标签的 y 坐标。
  • labels:指定要显示的文本标签内容。
  • pos:指定标签相对于坐标点的位置,可选值包括 1(下方)、2(左下方)、3(左方)、4(左上方)、5(上方)、6(右上方)、7(右方)和 8(右下方)。
  • col:指定标签的颜色。
  • cex:指定标签的字体大小缩放因子。
  • font:指定标签的字体类型,如 "plain"(普通字体)、"bold"(粗体)、"italic"(斜体)等。
# 创建散点图并添加标签
plot(x, y)
text(x = c(1, 2, 3), y = c(2, 4, 3), labels = c("Label 1", "Label 2", "Label 3"))# 添加带有样式的标签
plot(x, y)
text(x = c(1, 2, 3), y = c(2, 4, 3), labels = c("Label 1", "Label 2", "Label 3"), pos = 4, col = "blue", font = 2, cex = 1.5)

legend:添加图例

参数

  • x:指定图例的 x 坐标位置。
  • y:指定图例的 y 坐标位置。
  • legend:一个字符向量,包含要显示的图例标签。
  • fill:一个字符向量,指定图例中各个标签对应的填充颜色。
  • col:一个字符向量,指定图例中各个标签对应的线条或点的颜色。
  • pch:一个整数向量,指定图例中各个标签对应的点的形状。
    • 0:一个没有任何标记的点。
    • 1:一个小圆点(默认值)。
    • 2:一个小三角形。
    • 3:一个小菱形。
    • 4:一个小正方形。
    • 5:一个小平行四边形。
    • 6:一个小五角星。
  • 其他整数值:自定义的点的形状,例如 pch = 8
  • lty:一个整数向量,指定图例中各个标签对应的线条的类型。
    • 0:不画线条。
    • 1:实线(默认值)。
    • 2:虚线。
    • 3:点线。
    • 4:点划线。
    • "blank":空白线条,即没有线条。
    • 其他整数值:自定义的线条类型,例如 lty = 5
  • bty:一个字符,指定图例的边界类型。可选值包括 "o"(默认,边界框),"n"(无边界)和 "l"(仅左边界)。
  • cex:一个数值,指定图例中文本(标签)的大小缩放因子。
  • title:一个字符,指定图例的标题。
x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 3, 5, 1)plot(x, y, type = "b", pch = 16, col = "blue", main = "散点图示例")
points(x, y^2, pch = 17, col = "red")
lines(x, y, col = "green")legend("topright", legend = c("数据1", "数据2", "线条"),pch = c(16, 17, NA), col = c("blue", "red", "green"),lty = c(NA, NA, 1), title = "图例标题")


如学习到新内容会补充,整理不易,如有错误或遗漏,请大佬们不吝赐教!!💖💖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111628.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven导入包

有些时候maven导入不进去包&#xff0c;这个时候可以去直接去maven仓库找到你需要的包 https://mvnrepository.com/ 在自己本地输入命令 &#xff08;这只是一个样例&#xff0c;请根据自己需要的包参考&#xff09; mvn install:install-file -Dfile"C:/Users//Downloa…

【Docker】Docker网络与存储(三)

前言&#xff1a; Docker网络与存储的作用是实现容器之间的通信和数据持久化&#xff0c;以便有效地部署、扩展和管理容器化应用程序。 文章目录 Docker网络桥接网络容器之间的通信 覆盖网络创建一个覆盖网络 Docker存储卷 总结 Docker网络 Docker网络是在容器之间提供通信的机…

Java之SpringCloud Alibaba【五】【微服务 Sentinel整合openfeign进行降级】

一、Sentinel整合openfeign 1、复制一下order-openfeign项目&#xff08;创建order-openfeign-sentinel&#xff09; 然后在stock-nacos当中编写对应的接口 RequestMapping("/reduct2")public String reduct2(){int a 1/0;System.out.println("扣减库存"…

使用安全复制命令scp在Windows系统和Linux系统之间相互传输文件

现在已经有很多远程控制服务器的第三方软件平台&#xff0c;比如FinalShell&#xff0c;MobaXterm等&#xff0c;半可视化界面&#xff0c;使用起来非常方便和友好&#xff0c;两个系统之间传输文件直接拖就行&#xff0c;当然也可以使用命令方式在两个系统之间相互传递。 目录…

计算机毕设 基于深度学习的植物识别算法 - cnn opencv python

文章目录 0 前言1 课题背景2 具体实现3 数据收集和处理3 MobileNetV2网络4 损失函数softmax 交叉熵4.1 softmax函数4.2 交叉熵损失函数 5 优化器SGD6 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&a…

AndroidStudio3.5.2修改项目项目包名

公司项目要打造成产品进行演示&#xff0c;需要更换不同的包名进行安装在同一设备上&#xff0c;即所谓的马甲包 更改步骤基本一样 https://blog.csdn.net/qq_35270692/article/details/78336049 需要注意的是&#xff0c;按照上边的步骤修改完后&#xff0c;如果项目中有数据…

秒懂算法2

视频链接 : 希望下次秒懂的是算法题_哔哩哔哩_bilibili P1094 [NOIP2007 普及组] 纪念品分组 原题链接 : [NOIP2007 普及组] 纪念品分组 - 洛谷 思路 : 排序 贪心 双指针首先先对输入进来的数组进行排序(由小到大)运用贪心的思想 : 前后结合,令l1,rn,若a[l]a[r]<w…

开发智能应用的新范式:大数据、AI和云原生如何构建智能软件

文章目录 1.利用大数据实现智能洞察2. 集成人工智能和机器学习3. 云原生架构的弹性和灵活性4. 实现实时处理和响应5. 数据安全和隐私保护6. 可解释性和透明性7. 持续创新和迭代8. 数据伦理和合规性 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &a…

macOS使用命令行连接Oracle(SQL*Plus)

Author: histonevonzohomail.com Date: 2023/08/25 文章目录 SQL\*Plus安装下载环境配置 SQL\*Plus远程连接数据库参考文献 原文地址&#xff1a;https://histonevon.top/archives/oracle-mac-sqlplus数据库安装&#xff1a;Docker安装Oracle数据库 (histonevon.top) SQL*Plus…

安防视频监控/视频集中存储/云存储平台EasyCVR无法播放HLS协议该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…

继承AndroidView Model的错误

ViewModelProvider(this)[RegisterViewModel::class.java] 一行简单的代码&#xff0c;总是报这个错误 Caused by: java.lang.NoSuchMethodException: com.xinfa.registerlogin.viewmodel.LoginViewModel. [class android.app.Application] 经过一下午的思索&#xff0c;终于找…

查看edge浏览器插件的安装位置

C:\Users\zhang\AppData\Local\Microsoft\Edge\User Data\Default\Extensions 这是我的目录&#xff0c;把中间的的替换成你的电脑用户名就可以了 你也可以先输入目录的部分名称&#xff0c;下拉找对应的目录

Spring boot中调用C/C++(dll)

添加JNA依赖 <dependency><groupId>net.java.dev.jna</groupId><artifactId>jna</artifactId><version>5.5.0</version> </dependency>准备C代码/C代码 如下是C代码&#xff0c;文件名&#xff1a;xizi.c #include <std…

【爬虫】5.5 Selenium 爬取Ajax网页数据

目录 AJAX 简介 任务目标 创建Ajax网站 创建服务器程序 编写爬虫程序 AJAX 简介 AJAX&#xff08;Asynchronous JavaScript And XML&#xff0c;异步 JavaScript 及 XML&#xff09; Asynchronous 一种创建交互式、快速动态网页应用的网页开发技术通过在后台与服务器进行…

Spring Security注销后未正确保存空的SecurityContext漏洞CVE-2023-20862

文章目录 0.前言漏洞Spring Security介绍 1.参考文档2.基础介绍3.解决方案3.1. 升级版本3.2. 临时替代方案 4.Spring Security使用教程简单代码示例 0.前言 背景&#xff1a;公司项目扫描到 Spring-security 组件 注销后未正确保存空的SecurityContext CVE-2023-20862 漏洞 高…

Angular安全专辑之三:授权绕过,利用漏洞控制管理员账户

这篇文章是针对实际项目中所出现的问题所做的一个总结。简单来说&#xff0c;就是授权绕过问题&#xff0c;管理员帐户被错误的接管。 详细情况是这样的&#xff0c;我们的项目中通常都会有用户身份验证功能&#xff0c;不同的用户拥有不同的权限。相对来说管理员账户所对应的…

数据治理与数据安全治理思考

大数据经过多年发展&#xff0c;在不同的业务场景下得到深入应用&#xff0c;在企业提升经营目标、促进经营决策&#xff0c;以及通过大数据应用促进经济发展、优化民生工程、解决生活服务便捷等场景起到了重要作用。特别是十九届四中全会史无前例的将“数据”作为新型生产要素…

java对时间序列每x秒进行分组

问题&#xff1a;将一个时间序列每5秒分一组&#xff0c;返回嵌套的list&#xff1b; 原理&#xff1a;int除int会得到一个int&#xff08;也就是损失精度&#xff09; 输入&#xff1a;排序后的list&#xff0c;每几秒分组值 private static List<List<Long>> get…

Autosar存储入门系列04_NvM的CRC比较机制及同/异步写

本文框架 0.前言1. NvM的CRC校验1.1 CRC 比较机制 2. NvM的同步写及异步写2.1 NvM的同步写2.1 NvM的异步写 0.前言 本系列是Autosar存储入门系列&#xff0c;希望能从学习者的角度把存储相关的知识点梳理一遍&#xff0c;这个过程中如果大家觉得有讲得不对或者不够清晰的地方&…

安防监控/磁盘阵列存储/视频汇聚平台EasyCVR调用rtsp地址返回的IP不正确是什么原因?

安防监控/云存储/磁盘阵列存储/视频汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RT…