自然语言处理(一):词嵌入

词嵌入

词嵌入(Word Embedding)是自然语言处理(NLP)中的一种技术,用于将文本中的单词映射到一个低维向量空间中。它是将文本中的单词表示为实数值向量的一种方式。

在传统的文本处理中,通常使用独热编码(One-Hot Encoding)来表示单词,即将每个单词表示为一个稀疏的高维向量,向量中只有一个位置为1,其余位置为0。这种表示方式无法捕捉到单词之间的语义关系和相似性。

而词嵌入通过将单词映射到一个连续的向量空间中,使得具有相似语义的单词在向量空间中的距离更近。这样的表示方式可以更好地表达单词之间的语义关系,并且可以用于计算单词的相似度、聚类、分类等任务。

词嵌入模型通常是通过无监督学习的方式从大规模的文本语料库中学习得到的。一种常用的词嵌入模型是Word2Vec,它使用了神经网络模型来训练词嵌入向量。其他常见的词嵌入模型还包括GloVe、FastText等。

使用预训练的词嵌入模型,可以将文本中的单词转换为对应的词嵌入向量,从而为文本数据提供更丰富的表示。这对于各种NLP任务,如文本分类、命名实体识别、情感分析等,都具有重要的作用,并且可以提升模型的性能和效果。

文章内容来自李沐大神的《动手学深度学习》并加以我的理解,感兴趣可以去https://zh-v2.d2l.ai/查看完整书籍


文章目录

  • 词嵌入
  • 为什么独热向量是一个糟糕的选择
  • 自监督的word2vec
    • 跳元模型(Skip-Gram)
      • 定义
      • 训练
    • 连续词袋(CBOW)模型
      • 定义
      • 训练


为什么独热向量是一个糟糕的选择

  1. 维度灾难
    独热向量需要为每个可能的取值创建一个维度,这样会导致数据集在高维空间中变得非常稀疏。对于具有大量类别或取值的特征,独热编码会导致高维度的输入空间,这会增加模型的复杂性和计算开销。

  2. 信息损失
    独热向量将每个取值都视为独立的特征,忽略了它们之间的相关性。这可能会导致丢失一些重要的信息。
    我们一般使用余弦相似度来描述两个向量之间的相关性:
    x T y ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ ∈ [ − 1 , 1 ] \frac{x^Ty}{||x||||y||}\in [-1,1] ∣∣x∣∣∣∣y∣∣xTy[1,1]
    若我们使用独热编码,任意两个向量之间的余弦相似度为0.

  3. 统计效率低:独热向量会引入大量的零值,这对于统计建模来说可能是低效的。在数据集中存在大量零值的情况下,计算和存储这些稀疏向量的开销将会增加。

  4. 增加模型复杂性:独热向量会引入大量的特征维度,这可能导致模型的复杂性增加。对于某些机器学习算法,如决策树和神经网络,高维度的输入空间可能会导致模型过拟合的问题。

自监督的word2vec

为了解决独热编码的问题,我们引入word2vec方法。

Word2Vec 是一种用于将词汇映射到连续向量空间的技术,它是由 Google 在 2013 年开发的一种词嵌入(Word Embedding)方法。Word2Vec 通过学习大规模文本语料库中的上下文信息,将每个单词表示为一个稠密的向量,以便在计算机中更好地处理和理解自然语言。

Word2Vec 有两种主要的模型架构:连续词袋模型(Continuous Bag of Words, CBOW)和跳字模型(Skip-gram)。这两种模型都基于相同的原理:根据上下文单词的共现关系来学习词向量。

  • 连续词袋模型(CBOW):CBOW 模型的目标是根据上下文单词来预测目标单词。它将上下文中的单词作为输入,通过一个浅层神经网络模型来学习目标单词的向量表示。

  • 跳字模型(Skip-gram):Skip-gram 模型与 CBOW 模型相反,它的目标是根据目标单词来预测上下文单词。它通过训练来学习目标单词和上下文单词之间的关系,以得到每个单词的向量表示。

Word2Vec 使用的核心思想是“共现性”,即假设在语料库中,经常在相似的上下文中出现的单词也具有相似的语义含义。通过学习这种共现关系,Word2Vec 可以生成具有语义信息的词向量。这些词向量可以用于各种自然语言处理任务,如文本分类、命名实体识别、机器翻译等。

Word2Vec 的优点包括:

  1. 将离散的词汇表示为连续向量,使得单词更容易用数学方式进行处理和计算。
  2. 通过捕捉上下文关系,生成的词向量可以表达单词的语义和语法信息。
  3. 可以从大规模的未标记文本数据中自动学习词向量,无需人工标注数据。
  4. 生成的词向量可以在各种自然语言处理任务中作为特征输入,提高模型的性能。

需要注意的是,Word2Vec 也有一些限制和注意事项,例如对于罕见的单词可能无法得到很好的向量表示,以及在处理多义词时可能存在一定的歧义。此外,对于特定任务,可能需要对生成的词向量进行进一步微调或调整。

总体而言,Word2Vec 是一种非常有用且广泛应用的词嵌入技术,对于许多自然语言处理应用具有重要作用。

跳元模型(Skip-Gram)

定义

简单来说,跳元模型就是通过假设一个词可以用来在文本序列中生成其周围的单词。以文本序列“the”“man”“loves”“his”“son”为例。假设中心词选择“loves”,并将上下文窗口设置为2,如图所示,给定中心词“loves”,跳元模型考虑生成上下文词“the”“man”“him”“son”的条件概率:
P ( " t h e " , " m a n " , " h i s " , " s o n " ∣ " l o v e " ) P("the","man","his","son"|"love") P("the","man","his","son"∣"love")
若假设上下文词是在给定中心词的情况下独立生成的(即条件独立性)。在这种情况下,上述条件概率可以重写为:
P ( " t h e " ∣ " l o v e " ) ⋅ P ( " m a n " ∣ " l o v e " ) ⋅ P ( " h i s " ∣ " l o v e " ) ⋅ P ( " s o n " ∣ " l o v e " ) P("the"|"love")\cdot P("man"|"love")\cdot P("his"|"love")\cdot P("son"|"love") P("the"∣"love")P("man"∣"love")P("his"∣"love")P("son"∣"love")
在这里插入图片描述
在跳元模型中,每个词都有两个 d d d维向量表示,用于计算条件概率。更具体地说,对于词典中索引为 i i i的任何词,分别用 v i ∈ R d v_i\in R^d viRd u i ∈ R d u_i\in R^d uiRd表示其用作中心词和上下文词时的两个向量。给定中心词 w c w_c wc(词典中的索引 c c c),生成任何上下文词 w o w_o wo(词典中的索引 o o o)的条件概率可以通过对向量点积的softmax操作来建模:
P ( w o ∣ w c ) = e x p ( u o T v c ) ∑ i ∈ V e x p ( u i T v c ) P(w_o|w_c)=\frac{exp(u_o^Tv_c)}{\sum_{i\in V}exp(u_i^Tv_c)} P(wowc)=iVexp(uiTvc)exp(uoTvc)
其中词表索引集 V = 0 , 1 , . . . , ∣ V ∣ − 1 V={0,1,...,|V|-1} V=0,1,...,V1,给定长度为 T T T的文本序列,其中时间步 t t t处的词表示为 w t w^{t} wt。假设上下文词是在给定任何中心词的情况下独立生成的。对于上下文窗口 m m m,跳元模型的似然函数是在给定任何中心词的情况下生成所有上下文词的概率:
∏ t = 1 T ∏ − m ≤ j ≤ m , j ≠ 0 P ( w t + j ∣ w t ) \prod_{t=1}^{T} \prod_{-m\leq j \leq m,j\neq0}P(w^{t+j}|w^{t}) t=1Tmjm,j=0P(wt+jwt)
其中可以省略小于 1 1 1或大于 t t t的任何时间步。

训练

跳元模型参数是词表中每个词的中心词向量和上下文词向量。在训练中,我们通过最大化似然函数(即极大似然估计)来学习模型参数。这相当于最小化以下损失函数:
− ∑ t = 1 T ∑ − m ≤ j ≤ m , j ≠ 0 l o g P ( w ( t + j ) ∣ w ( t ) ) -\sum_{t=1}^{T}\sum_{-m\leq j \leq m,j\neq0}logP(w^{(t+j)}|w^{(t)}) t=1Tmjm,j=0logP(w(t+j)w(t))
当使用随机梯度下降来最小化损失时,在每次迭代中可以随机抽样一个较短的子序列来计算该子序列的(随机)梯度,以更新模型参数。为了计算该(随机)梯度,我们需要获得对数条件概率关于中心词向量和上下文词向量的梯度。通常,涉及中心词 w c w_c wc和上下文词 w o w_o wo的对数条件概率为:
l o g P ( w o ∣ w c ) = u o T v c − l o g ( ∑ i ∈ V e x p ( u i T v c ) ) logP(w_o|w_c)=u_o^Tv_c-log(\sum_{i\in V}exp(u_i^Tv_c)) logP(wowc)=uoTvclog(iVexp(uiTvc))
通过微分,我们可以获得其相对于中心词向量 v c v_c vc的梯度为
在这里插入图片描述
注意, 上式中的计算需要词典中以 w c w_c wc为中心词的所有词的条件概率。其他词向量的梯度可以以相同的方式获得。
对词典中索引为 i i i的词进行训练后,得到 v i v_i vi(作为中心词)和 u i u_i ui(作为上下文词)两个词向量。在自然语言处理应用中,跳元模型的中心词向量通常用作词表示。

对于如何具体使用和训练跳元模型,我将在后面的博客中给出

连续词袋(CBOW)模型

定义

连续词袋(CBOW)模型类似于跳元模型。与跳元模型的主要区别在于,连续词袋模型假设中心词是基于其在文本序列中的周围上下文词生成的。例如,在文本序列“the”“man”“loves”“his”“son”中,在“loves”为中心词且上下文窗口为2的情况下,连续词袋模型考虑基于上下文词“the”“man”“him”“son”(如下图所示)生成中心词“loves”的条件概率,即:
P ( " l o v e " ∣ " t h e " , " m a n " , " h i s " , " s o n " ) P("love"|"the","man","his","son") P("love"∣"the","man","his","son")
在这里插入图片描述
由于连续词袋模型中存在多个上下文词,因此在计算条件概率时对这些上下文词向量进行平均。具体地说,对于字典中索引 i i i的任意词,分别用 v i ∈ R d v_i\in R^d viRd u i ∈ R d u_i\in R^d uiRd表示用作上下文词和中心词的两个向量(符号与跳元模型中相反)。给定上下文词 w o 1 , . . . , w o 2 m w_{o1},...,w_{o2m} wo1,...,wo2m(在词表中索引是 o 1 , . . . , o 2 m o1,...,o2m o1,...,o2m)生成任意中心词 w c w_c wc(在词表中索引是 c c c)的条件概率可以由以下公式建模:
在这里插入图片描述
为了简洁起见,我们设为 W o = o 1 , . . , o 2 m W_o={o1,..,o2m} Wo=o1,..,o2m v ˉ = ( v o 1 + v o 2 + . . . + v o 2 m ) / ( 2 m ) \bar{v}=(v_o1+v_o2+...+v_{o2m})/(2m) vˉ=(vo1+vo2+...+vo2m)/(2m),那么上述式子可以化简为:
在这里插入图片描述
给定长度为 T T T的文本序列,其中时间步 t t t处的词表示为 w t w^{t} wt。对于上下文窗口 m m m,连续词袋模型的似然函数是在给定其上下文词的情况下生成所有中心词的概率:
在这里插入图片描述

训练

训练连续词袋模型与训练跳元模型几乎是一样的。连续词袋模型的最大似然估计等价于最小化以下损失函数:

在这里插入图片描述
请注意,
在这里插入图片描述
通过微分,我们可以获得其关于任意上下文词向量 v o i v_{oi} voi i = 1 , 2 , . . . , 2 m i=1,2,...,2m i=1,2,...,2m)的梯度,如下:
在这里插入图片描述
其他词向量的梯度可以以相同的方式获得。与跳元模型不同,连续词袋模型通常使用上下文词向量作为词表示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111879.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python Opencv实践 - Canny边缘检测

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_GRAYSCALE) print(img.shape)#图像Canny边缘检测 #cv.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradien…

GitHub 标星 15w,如何用 Python 实现所有算法?

学会了 Python 基础知识,想进阶一下,那就来点算法吧!毕竟编程语言只是工具,结构算法才是灵魂。 新手如何入门 Python 算法? 几位印度小哥在 GitHub 上建了一个各种 Python 算法的新手入门大全。从原理到代码&#xf…

助力网络管理的利器:企业办公网络中的VLAN划分策略

企业办公网络的性能和安全性对员工的高效工作和信息安全具有重要意义。在实现这一目标时,VLAN(Virtual Local Area Network)划分在网络设计中发挥着至关重要的作用。通过将办公网络划分为多个虚拟局域网,VLAN划分可以实现网络资源…

Web服务器-Tomcat详细原理与实现

Tomcat 安装与使用 :MAC 安装配置使用Tomcat - 掘金 安装后本计算机就相当于一台服务器了!!! 方式一:使用本地安装的Tomcat 1、将项目文件移动到Tomcat的webapps目录下。 2、启动Tomcat 3、在浏览器输入想要加载的…

ELK日志分析系统概述及部署

ELK 平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kibana 三个开源工具配合使用,完成更强大的用户对日志的查询、排序、统计需求。 一、ELK概述 1、组件说明 ①ElasticSearch ElasticSearch是基于Lucene(一个全文…

2023年中,量子计算产业现状——

2023年上半年,量子计算(QC)领域取得了一系列重要进展和突破,显示出量子计算技术的快速发展和商业应用的不断拓展。在iCV TAnk近期发表的一篇报告中,团队从制度进步、产业生态、投融资形势、总结与展望四个方面对量子计…

IDEA遇到 git pull 冲突的几种解决方法

1 忽略本地修改,强制拉取远程到本地 主要是项目中的文档目录,看的时候可能多了些标注,现在远程文档更新,本地的版本已无用,可以强拉 git fetch --all git reset --hard origin/dev git pull关于commit和pull的先后顺…

C语言练习题解析:挑战与突破,开启编程新篇章!(1)

💓博客主页:江池俊的博客⏩收录专栏:C语言刷题专栏👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐&a…

MySQL一行记录是如何存储的?

目录 MySQL的数据存放在哪个文件? 表空间文件的结构是怎么样的? 1、行(row) 2、页(page) 3、区(extent) 4、段(segment) InnoDB 行格式有哪些&#xf…

mac电脑屏幕录制Berrycast Mac屏幕录制软件

Berrycast是一款为Mac设计的优秀屏幕录制软件,它让屏幕录制变得简单而高效。以下是Berrycast的一些主要特点: 简单的用户界面:Berrycast拥有直观和简洁的用户界面,使得用户可以轻松上手。高质量的视频输出:Berrycast能…

面试中的系统设计:应对复杂问题的方法与技巧

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

Swift 中的动态成员查找

文章目录 前言基础介绍基础示例1. 定义一个动态成员访问类:2. 访问嵌套动态成员: 使用 KeyPath 的编译时安全性KeyPath 用法示例KeyPath 进阶使用示例1. 动态访问属性:2. 结合可选属性和 KeyPath:3. 动态 KeyPath 和字典&#xff…

springBoot打印精美logo

文章目录 🐒个人主页🏅JavaEE系列专栏📖前言:🎀文本logo 🐒个人主页 🏅JavaEE系列专栏 📖前言: 本篇博客主要以提供springBoot打印精美logo 🎀文本logo ??…

lnmp架构-tomcat session

tomcat session共享 部署 tomcat 在server2 和 server3上进行同样的操作 保存的信息都会在tomcat日志中保存 tomcat 与nginx的整合 在server1上 当并发量开始增大时 就得做负载均衡 解决 当一个tomcat服务器挂掉后 另一个服务器上有第一个服务器上提交的数据问题 在server2…

Maven入门教程(二):idea/Eclipse使用Maven

视频教程:Maven保姆级教程 Maven入门教程(一):安装Maven环境 Maven入门教程(二):idea/Eclipse使用Maven Maven入门教程(三):Maven语法 Maven入门教程(四):Nexus私服 Maven入门教程(五):自定义脚手架 4.开发…

DEFORMABLE DETR: DEFORMABLE TRANSFORMERS FOR END-TO-END OBJECT DETECTION 论文精读笔记

DEFORMABLE DETR DEFORMABLE DETR: DEFORMABLE TRANSFORMERS FOR END-TO-END OBJECT DETECTION 参考:AI-杂货铺-Transformer跨界CV又一佳作!Deformable DETR:超强的小目标检测算法! 摘要 摘要部分,作者主要说明了如…

2023年7月天猫糕点市场数据分析(天猫数据怎么看)

烘焙食品行业是近几年食品领域比较火热的赛道之一,随着居民饮食结构的变化,人均消费水平的上升,蛋糕、面包等烘焙糕点越发成为消费者饮食的重要组成部分。同时,在烘焙糕点市场中,老品牌不断推新迭变,新品牌…

钉钉小程序引用阿里巴巴图标

2.打开的界面如图,先建一个iconfont.acss文件,全选浏览器打开的样式代码,复制粘贴进新建的iconfont.acss文件中 3.使用

ARM DIY(四)WiFi 调试

文章目录 焊接打开内核编译选项重新编译内核烧录 && 运行 && 测试完善脚本测速手搓天线正式天线 焊接 换个粗点的风枪嘴,让热风覆盖 RTL8823BS 整体模块,最终实现自动归位 焊接 SDIO 接口的上拉电阻以及复位引脚上拉电阻 硬件部分就这…