GEE/PIE遥感大数据处理与典型案例丨数据整合Reduce、云端数据可视化、数据导入导出及资产管理、机器学习算法等

目录

​专题一:初识GEE和PIE遥感云平台

专题二:GEE和PIE影像大数据处理基础

专题三:数据整合Reduce

专题四:云端数据可视化

专题五:数据导入导出及资产管理

专题六:机器学习算法

专题七:专题练习与回顾

更多应用


随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。

为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)和航天宏图的PIE Engine等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。作为国内最先进的遥感云平台,PIE Engine近年来发展发非常迅速,拥有丰富的国产卫星数据,以及中国区域的其它重要开源数据,在数据安全性和访问便利性方面具有独到的优势。与传统的处理影像工具(例如ENVI)相比,遥感云平台一方面提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。

如今,GEE/PIE等遥感云平台凭借其强大的功能正受到越来越多国内外科技工作者的关注,应用范围也在不断扩大。本课程致力于帮助科研工作者掌握GEE和PIE的实际应用能力,以JavaScript编程语言为基础,结合实例讲解遥感云的基本概念知识、影像大数据分析、经典应用案例等方面的进阶技能。为了提高教学质量,本课程将融合最先进的ChatGPT等AI自然语言模型辅助教学,协助学员解答疑惑、提供针对性建议和指导,不仅让学员更深入地掌握课程内容,还为今后自助学习提供高效的个性化的学习体验。

​专题一:初识GEE和PIE遥感云平台

(1)GEE和PIE平台及典型应用案例介绍
(2)JavaScript基础,包括变量,运算符,数组,判断及循环语句等
(3)遥感云重要概念与典型数据分析流程
(4)遥感云基本对象及平台上手
影像与影像集
几何体、要素与要素集
日期、字符、数字
数组、列表、字典
影像/影像集、要素/要素集数据查询、时空过滤、可视化、属性查看等主要对象最常用API介绍

专题二:GEE和PIE影像大数据处理基础

(1)关键知识点讲解
影像数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取等
影像掩码,裁剪和镶嵌
集合对象的循环迭代(map/iterate)
集合对象联合(Join)
影像面向对象分析
(2)主要功能串讲与演练
Landsat/Sentinel-2影像批量去云
Landsat/Sentinel-2传感器归一化、植被指数计算等
时间序列光学影像的平滑与空间插值

专题三:数据整合Reduce

(1)关键知识点讲解
影像与影像集整合,如指定时窗的年度影像合成
影像区域统计与领域统计,分类后处理
要素集属性列统计 
栅格与矢量的相互转换
分组整合与区域统计
影像集、影像和要素集的线性回归分析
(2)主要功能串讲与演练
研究区可用Landsat影像的数量和无云观测数量的统计分析
中国区域年度NDVI植被数合成及年度最绿的DOY时间查找
国家尺度30年尺度的降雨量时空变化趋势分析

专题四:云端数据可视化

(1)关键知识点讲解
要素与要素集属性制图(条形图、直方图、堆积柱形图、散点图等)
影像制图(区域统计、分类图、直方图、散点图、线型图,饼图等)
影像集制图(样点时间序列图、区域统计时间序列图等)
数组与链表制图(散点图、样线图等)
图形风格和属性设置
(2)主要功能串讲与演练
基于MODIS时间序列影像的不同地表植被物候分析与制图
基于Hansen产品的年度森林时空变化分析与专题图绘制

专题五:数据导入导出及资产管理

(1)关键知识点讲解
不同矢量数据上传个人资产
影像数据上传个人资产、属性设置等
影像批量导出(Asset和Driver)
矢量数据导出(Asset和Driver)
空间统计分析结果导出
(2)主要功能串讲与演练
PIE平台国产卫星数据下载
影像合成批量导出及下载
地面样地对应遥感指标数据导出

专题六:机器学习算法

(1)关键知识点讲解
样本抽样(随机抽样、分层随机抽样)
监督分类算法(随机森林、CART、贝叶斯、SVM、决策树等)
非监督分类算法(wekaKMeans、wekaLVQ等)
分类精度评估
(2)主要功能串讲与演练
联合光学与雷达时间序列影像的森林动态监测
水体自动提取与洪涝监测

专题七:专题练习与回顾

(1)GEE土地利用分类综合案例,实现主要功能串讲,包括地面样本准备、多源遥感影像预处理、算法开发、分类后处理、精度评估和空间统计分析与制图等环节
(2)经典PIE案例代码讲解与学习
夜间灯光指数提取
长时间尺度植被覆盖度反演
水域动态监测
农作物种植面积提取
荒漠化程度提取
(3)人口密度动态变化分析学员征集案例讲解与答疑
GEE与PIE平台切换、代码优化、常见错误与调试总结


更多应用

GEE入门学习,遥感云大数据分析、管理与可视化以及在林业应用丨灾害、水体与湿地领域应用丨GPT模型应用_WangYan2022的博客-CSDN博客近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨大的挑战。传统的工作站和服务器已经无法胜任大区域、多尺度海量遥感数据处理的需要。https://blog.csdn.net/WangYan2022/article/details/131678440?spm=1001.2014.3001.5502【高分论文密码】大尺度空间模拟预测和数字制图技术和不确定性分析_WangYan2022的博客-CSDN博客结合经典的例子讲解R语言在空间数据处理、管理以及可视化的操作,从空间数据计量、大尺度时间序列分析与突变检测、空间数据插值、空间数据建模、机器学习空间预测、多种机器学习集成技术、空间升、降尺度技术、空间模拟偏差订正技术、数据可视化、知识图谱等方面让您全方位掌握R语言大尺度空间数据分析模拟预测及可视化技术。https://blog.csdn.net/WangYan2022/article/details/130800531?spm=1001.2014.3001.5502最新基于Citespace、vosviewer、R语言文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法_WangYan2022的博客-CSDN博客通过文献计量学讲解、高效选题、数据库检索数据下载、软件使用等八个专题详细讲解,让学员系统全面的掌握文献计量学的基本理论和知识;熟练掌握Citespace和vosviewer及R语言文献可视化分析技术;最终实现从主题确定、数据分析绘图、文章框架与写作,全流程掌握一篇文献信息可视化分析报告(论文)的思路逻辑与技术方法。https://blog.csdn.net/WangYan2022/article/details/131889523?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/112229.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023-8-30 Dijkstra 求最短路(一)

题目链接&#xff1a;Dijkstra求最短路 I #include <iostream> #include <cstring> #include <algorithm>using namespace std;const int N 510;int n, m; int g[N][N]; int dist[N]; bool st[N];int dijkstra() {memset(dist, 0x3f, sizeof dist);dist[1…

Leetcode每日一题:1448. 统计二叉树中好节点的数目

原题 给你一棵根为 root 的二叉树&#xff0c;请你返回二叉树中好节点的数目。 「好节点」X 定义为&#xff1a;从根到该节点 X 所经过的节点中&#xff0c;没有任何节点的值大于 X 的值。 示例 1&#xff1a; 输入&#xff1a;root [3,1,4,3,null,1,5] 输出&#xff1a;4 解…

C语言网络编程:实现自己的高性能网络框架

一般生产环境中最耗时的其实是业务逻辑处理。所以&#xff0c;是不是可以将处理业务逻辑的代码给拆出来丢到线程池中去执行。 比如像下面这样&#xff1a; ​我们事先创建好一堆worker线程&#xff0c;主线程accepter拿到一个连接上来的套接字&#xff0c;就从线程池中取出一个…

开始MySQL之路——MySQL的DataGrip图形化界面

下载DataGrip 下载地址&#xff1a;Download DataGrip: Cross-Platform IDE for Databases & SQL 安装DataGrip 准备好一个文件夹&#xff0c;不要中文和空格 C:\Develop\DataGrip 激活DataGrip 激活码&#xff1a; VPQ9LWBJ0Z-eyJsaWNlbnNlSWQiOiJWUFE5TFdCSjBaIiwibGl…

python+django+mysql旅游景点推荐系统-前后端分离(源码+文档)

系统主要采用Python开发技术和MySQL数据库开发技术以及基于OpenCV的图像识别。系统主要包括系统首页、个人中心、用户管理、景点信息管理、景点类型管理、景点门票管理、在线反馈、系统管理等功能&#xff0c;从而实现智能化的旅游景点推荐方式&#xff0c;提高旅游景点推荐的效…

MinIO框架安装使用+实现上传需求

MinIO框架 什么是MinIO框架如何安装&#xff08;Docker版&#xff09;安装步骤1. 查询MinIO的服务版本2. 拉取MinIO3.启动报错在docker中没有操作文件的权限 4. 访问 简单配置1.找到创建用户界面2. 设置用户信息3. 创建一个桶 使用MinIO依赖搭建MinIO的初始化API存储桶的基本操…

SaaS多租户系统架构设计

前言&#xff1a;多租户是SaaS&#xff08;Software-as-a-Service&#xff09;下的一个概念&#xff0c;意思为软件即服务&#xff0c;即通过网络提供软件服务。SaaS平台供应商将应用软件统一部署在自己的服务器上&#xff0c;客户可以根据工作的实际需求&#xff0c;通过互联网…

二级MySQL(十)——单表查询

这里我们只在一个表内查询&#xff0c;用到的是较为简单的SELECT函数形式 1、查询指定的字段&#xff1a; 用到的数据库是之前提到的S、P、SP数据库 S表格用到的总数据&#xff1a; 首先我们查询所有供应商的序号和名字 这时都是独立的&#xff0c;没有关系&#xff0c;我们找…

Acwing796.子矩阵的和

理解二维前缀和&#xff1a; #include <iostream>using namespace std;const int N 1010;int a[N][N], s[N][N];int main() {int n, m, q;cin >> n >> m >> q;for (int i 1; i < n; i)for (int j 1; j < m; j) {scanf("%d", &a…

SpringBoot的自动装配源码分析

文章目录 一&#xff1a;什么是自动装配二、springboot的启动流程1.调用SpringApplication&#xff08;&#xff09;的构造方法2.执行核心run方法&#xff08;&#xff09;3.执行核心prepareContext&#xff08;&#xff09;4.执行核心refreshContext&#xff08;&#xff09;5…

机房安全之道:构筑坚固的网络防线

引言&#xff1a; 在数字化时代&#xff0c;机房成为了许多组织和企业的核心基础设施&#xff0c;承载着重要的数据和应用。然而&#xff0c;随着网络攻击日益猖獗&#xff0c;机房的安全性显得尤为重要。本文将深入探讨如何构建坚固的网络防线&#xff0c;保护机房免受攻击的方…

测试理论与方法----测试流程的第四个步骤:执行测试,提出缺陷

8、执行测试—–>提交缺陷报告 测试流程&#xff1a;执行测试—–>提交缺陷报告 1、缺陷的概述&#xff08;回顾&#xff09; 结果角度&#xff1a;实际结果和预期结果不一致 需求角度&#xff1a;所有不满足需求或超出需求的&#xff0c;都是缺陷 2、缺陷的相关属性…

基于React实现无限滚动的日历详细教程,附源码【手写日历教程第二篇】

前言 最常见的日历大部分都是滚动去加载更多的月份&#xff0c;而不是让用户手动点击按钮切换日历月份。滚动加载的交互方式对于用户而言是更加丝滑和舒适的&#xff0c;没有明显的操作割裂感。 那么现在需要做一个这样的无限滚动的日历&#xff0c;前端开发者应该如何去思考…

设计模式--代理模式(Proxy Pattern)

一、什么是代理模式&#xff08;Proxy Pattern&#xff09; 代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许一个对象&#xff08;代理&#xff09;充当另一个对象&#xff08;真实对象&#xff09;的接口&#xff0c;以控制对该对象的…

requests之post请求data传参和json传参区别

问题描述 在一次接口post测试请求传参异常的记录 print(header)rp requests.post(EvnUrlConfig.getUrl(url),headersheader,datauserDevcieParam)传输到后台服务器报了异常 原因分析&#xff1a; 显而易见我的请求头的content-type类型有异常了&#xff0c;但我明明传的是app…

如何利用人工智能实现软件测试的左移

在本文中&#xff0c;我们&#xff08;作者&#xff09;探讨了如何利用人工智能的力量&#xff0c;在软件测试领域实现左移。 用AI驱动的创新变革测试领域 测试在确保应用程序质量和可靠性方面发挥着至关重要的作用。然而&#xff0c;随着测试要求变得越来越复杂&#xff0c;人…

2023年最新版Windows环境下|Java8(jdk1.8)安装教程

个人主页&#xff1a;平行线也会相交 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 平行线也会相交 原创 收录于专栏【JavaSE_primary】 jdk1.8的下载和使用总共分为3个步骤&#xff1a; jdk1.8的下载、jdk1.8的安装、配置环境变量。 目录 一、jdk1.8下载…

C#,《小白学程序》第五课:队列(Queue)

日常生活中常见的排队&#xff0c;软件怎么体现呢&#xff1f; 排队的基本原则是&#xff1a;先到先得&#xff0c;先到先吃&#xff0c;先进先出 1 文本格式 /// <summary> /// 《小白学程序》第五课&#xff1a;队列&#xff08;Queue&#xff09; /// 日常生活中常见…

39、springboot的前端静态资源的WebJar支持(bootstrap、jquery等)及自定义图标和首页

★ WebJar支持 Spring Boot支持加载WebJar包中的静态资源&#xff08;图片、JS、CSS&#xff09;&#xff0c; WebJar包中的静态资源都会映射到/webjars/**路径。——这种方式下&#xff0c;完全不需要将静态资源复制到应用的静态资源目录下。只要添加webjar即可。假如在应用的…

【LeetCode-中等题】2. 两数相加

文章目录 题目方法一&#xff1a;借助一个进制位&#xff0c;以及更新尾结点方法一改进&#xff1a;相比较第一种&#xff0c;给head一个临时头节点&#xff08;开始节点&#xff09;&#xff0c;最后返回的时候返回head.next&#xff0c;这样可以省去第一次的判断 题目 方法一…