数据分析基础-数据可视化学习笔记03-可视化的符号与表示-图形符号学

概念

图型符号学(Cartographic Symbolization)是地图学领域中的一个重要概念,涉及到如何使用不同的符号、颜色、图案和标记来在地图上表示地理信息和数据。图型符号学旨在传达地理信息,使得地图能够清晰、有效地传达各种空间数据的含义和关系。

关键方面

图型符号学涉及以下几个关键方面:

符号化设计:图型符号学包括选择适当的符号、颜色和标记来表示不同的地理特征和现象。符号可以是点、线、面、图案、标签等,每种符号都应该与所代表的地理现象相匹配。

视觉变量:图型符号学基于一些视觉变量,如大小、形状、颜色、明暗度等,来传达信息。这些视觉变量影响人们对地图信息的感知,因此需要谨慎选择以确保地图的可读性和有效性。

分类和分级:符号通常用于将数据分类或分级。这意味着将数据分成几个类别,然后为每个类别选择合适的符号。分级可以基于等间距、等数量等原则进行。

图例设计:图例是解释地图符号的关键工具。设计良好的图例可以帮助地图读者理解符号的含义,并将地图信息与现实世界联系起来。

颜色的运用:颜色在地图中的使用非常重要,它可以用来表示不同类别、属性或强度。然而,需要小心选择颜色,以确保色盲人士和其他特定用户也能理解地图信息。

地图表达:图型符号学的目标是在地图上有效地表达地理信息。这需要考虑符号的布局、密度、重叠等因素,以确保地图的清晰性和易读性。

在地理信息系统(GIS)和地图制作中,图型符号学起着至关重要的作用。地图制图人员需要根据不同的数据类型、目标受众和使用场景,选择适当的符号化方法来制作具有表达力和可视化效果的地图。

符号域

参考:
在这里插入图片描述

A.图形系统的范围
它的极限
没有对符号系统界限的严格描述,就无法对其进行分
析。这项研究不包括所有类型的视觉感知,真正的运动
被明确排除在外。对电影摄影表达的研究很快就会发
现,它的大部分法则与电影绘画的法则有着本质上的不
同。虽然运动只引入了一个额外的变量,但它是一个压
倒一切的变量;它如此支配着知觉,以至于严重限制了
对其他变量意义的关注。再者,几乎可以肯定实时不是
定量的;它是“有弹性的”时间单位似乎在静止时延
长,在活动时缩短,尽管我们还不能确定这种变化的所
有因素。
实际的浮雕表现(物理上的第三维)在这里也没有用武之
地,仅用于比较。
在这项研究中,我们将只考虑以下情况:
— 可表现的或可印刷的
— 在一张白纸上
— 标准尺寸,一目了然
— 在对应于阅读书籍或地图册的视觉距离处
— 在正常和恒定的光照下(但在适用的情况下,
考虑日光和人造光之间的差异)
— 利用容易获得的图形手段。
因此,我们将排除:
— 距离和照明的变化
— 实际浮雕(厚度、立体图、立体图)
— 实际运动(图像闪烁、动画绘画、电影)。
在这些限制范围内,设计师可以做什么?马克斯。
为了使标记可见,它必须具有不同于纸张的反光能
力。标记越大,差异就越不明显。最低可见性和辨别力
的黑色标记的直径必须为 2/10 mm。但这不是绝对的,
因为较小标记的组合完全可见。
42
视觉变量
可见标记在纸张上的位置可以变化。例如,在对页的图
1 中,黑色矩形在白色正方形的底部和右侧。它也可以
在底部向左,或者在顶部向右。
因此,一个标记可以表示由
两个平面维度
固定在平面上给定点的标记,只要它有一定的尺寸,
就可以用不同的方式画出来。它可以在以下方面有所
不同
尺寸值纹理
颜色
方向形状
并且还可以表示其平面位置与其在构成每个变量的序列
中的位置之间的对应关系。
因此,设计者有八个变量要处理。它们是图形系统的
组成部分,将被称为“视觉变量”它们构成了图像的
世界。有了它们,设计师建议透视,画家建议现实,
制图师建议关系,制图师建议空间。
这种对八个因素中的时间视觉感知的分析并不排除其他
方法。但是,结合“植入”的概念,它具有更系统的优
势,同时仍然适用于图形结构中遇到的实际问题。
这些变量具有不同的属性和不同的能力来描述给定类型的
信息。与所有组件一样,每个变量都以其组织级别和长度
为特征。我们将首先研究平面的性质,然后研究那些可以
被“提升”到平面之上的视网膜变量。


2PD
43
B.飞机
平面是所有图形表现的主体。它是如此熟悉,以至于
它的性质似乎不言而喻,但最熟悉的东西往往是最不
为人知的。平面是同质的,有两个维度。必须充分探
索这些特性的视觉效果。
(1)植入(代表类别)
可以分配给平面上标记的三种类型的含义——点、线
和面——将被称为“植入”*它们构成了平面几何的
三个基本图形。
沿着一条线,人们可以考虑一个点或一条线段。在平
面上,人们可以考虑一个点、一条线或一个区域。未能
掌握这一基本概念的各种分支是制图中经常出错的原
因。混乱源于这样一个事实,即点和线没有理论上的面
积,然而代表它们的标记需要一定的“面积”才能看得
见。
区分代表类别的后果
— 视网膜变量的长度(可用步骤的数量)和它们的用
途随着所涉及的表现类型而变化。
— 量的表示根据使用的是点、线还是面而有所不
同。
— 代表阶层的差异是有选择性的。
— 在一个图像中,相同的概念不能用不同的“植
入”来表示

一张纸上的直线有一定的长度,可以测量。但是,在测
量的时候,它的末端被认为没有长度。这些是要点。然
而,他们在这条线上有一个位置。
距离纸张水平边缘 51 毫米的点,以及
离垂直边缘 34.5 毫米的平面上有一个位置。无论是通
过直径为 1/10 mm 的“针刺”还是通过直径为 5 mm
的“预印圆”可见,其中心都有一个精确的位置,但标
记本身并不表示平面上的长度或面积。
点代表平面上没有理论长度或面积的位置。这种含义
与使其可见的标记的大小和性质无关。
因此,一个点的位置可以改变,但永远不会改变
参见 tran.slator 的注释,第 7 页。
44
表示图像平面上的线或区域。通过对比,使其可见的标记可以
在大小、价值、质地、颜色、方向和形状上有所不同,但在位
置上不能有所不同。位置意义自然适用于标记的视觉中心。任
何其他用法都必须明确。
许多例子可以用来说明这个想法:地理上的或汇合点、
十字路口、森林的“角落”、飞机的位置或发射机都是
平面空间中的点,没有理论上的长度或面积。尽管如
此,它们的图形表示需要有足够大的标记来使它们可
见。用图表表示时,这些现象称为点表示。
这条线
平行推理允许把一条线描述为两个区域之间的边界。它
有长度和在平面上的位置,但没有理论面积。
一条线表示平面上有可测长度但没有面积的一种现
象。这种含义与使其可见的标记的宽度和特征无关。
因此,一条线的位置可以变化,但决不表示图像平面
上的一个区域。然而,使其可见的标记可以根据除了平
面上的位置以外的所有变量而变化:宽度、价值、质
地、颜色、其组成部分的方向和细节的形状。位置含义
自然适用于标记的线性轴。一个大陆、一个国家或一块
地产边界,一条船的航线,或一条公共汽车路线,都是
没有理论面积的线性现象。在制图中,它们将由线表
示。
该地区
然而,一个标记可以表示平面上的一个区域。
面积表示平面上有可测量大小的东西。这一含义适用
于可见标志所覆盖的整个区域。
一个区域可以在位置上变化,但是代表它的标记不能
在大小、形状和方向上变化而不引起该区域本身意义的
变化。然而,这种标志在价值、质地和颜色上可能有所
不同。
如果该区域在视觉上由点或线的星座来表示,这些组
成点和线可以在大小、形状或方向上变化,而不会导致
该区域在意义上变化。在制图中,湖泊、岛屿、土地、
城市区域和国家/地区等现象将由区域表示。
A 1 o
& 2 O
二氧化碳


G A 4 O
B 8 O
C2 岛
D 4 O
q
B
A
对要表示的量的分析
当计数单位具有可变尺寸时,与这些单位相关的数量的
表示必须考虑:
(1) 单位的点、线或区域表示;
(2) 要表示的量的性质 Q 或 QS(见第 38 页)。
以下列有关四个社区(单位)的信息为例:
单位(社区)
面积 4 4 1 1(几十平方公里)
持久性有机污染物的数量。(QS) 4 8 2 4(千人)
pop 的密度。(Q) 1 2 2 4 (%)
在图 1 中,社区有一个点代表。它们是散点图中的点
(根据农业[I]和工业[II]人口的百分比分布的社区)。
对于每一个点,可以添加第三个因素,作为 QS(图 2),美
国 qtl tf1titieSi Q(图 3),这将被正确地感知。
在图 4 中,公社用竖线表示
线段,其长度与 s 成比例。如果一个
在 A A A B B B 的另一维度上构造 QS 量
平面(图 5),眼睛水平感知 QS,但 A A B B B
它特别看到了建筑面积,即 QS2,它将其解释为人口 QS。
该区域和
总纲是错误的。因此,必须构造一个
QS/S(即 Q ),如图 6 所示,这给出了面积上的 QS 量的精
确图像和水平上的密度 Q 的精确图像。
在图 7 中,公社用与南部相对应的面积来表示。QS 和 Q
的分布如图 9 和图 10 所示。最简单的表示(每 1000 名居民
一个点)产生图 8,这是正确的。
人们可以很容易地判断图 11 和图 13 引起的视觉混
乱,这两个图将 QS 值扩展到整个
DDD CC C +
D D D D C C C C C
D DCC CCC
D D C C C CC 7
QS
4 8 8 8
9 *
g
l 11 1
11222222
1 1 1 1 1 1
11 222222 1 1
1 1
10 11
面积。
眼睛看到那里,如图 5,QS 乘以面积,也就是 QS
'(另见第 77 页,图 5 和图 6)。然而,QS 的代表可能
是有用的(例如,在衡量不同市长的责任)。在这种情
况下,图 15,即每个区域的一个点 QS,避免了前面
的视觉混乱。
相比之下,在每个面积上构造一个点 Q 会导致错误
的表示(图 16),而图 12 和 14 是正确的。
有趣的是,图 5 中的感知误差为统计学家所熟知,并
且几乎总能避免,而图 11 和图 13 中产生的错误感知
仍然存在,其中误差以类似的数学方式表示(QS2 的
感知)。平面“上方”的知觉控制不如平面上的知觉
控制明显。它同样重要,因为它关系到所有的制
图。
a o 菲菲 M a o o o o
2 a MMM 1+e e e e e e
2 1
4 2
20 O e e e
1:as II:“,— e 1 9 s
45
L
A 4 四 一

c l
D 1


4 -:是 + :美国 2 $ fi —: P 操作
系统
A
黄油 1952
(2) 平面是连续的和均匀的
这架飞机有能力进行地下突击。它是连续的。它的可分性仅由第
一个字母和第二个字母决定。在 e‹isi,一行一厘支持十个可识
别的分区。紧挨着 sh‹ipe 山谷。//i‹/安大略省,通用电气公司
iiri/I’r/I-nb/e。因此,我们通常将最长分量的表示应用于该
平面。
因为它没有连续的双 eal‹s,没有“缝隙”,所以我不会把它放
在国际/ric’iinr‹.作为一个结果。它非常不同-
很难用 tl4C l H4C 来评价脆性。一
尽管它引起了对 iaa i ssin
数据的关注。图 1 给出了一个模糊
的划分印象。
它 i.i i’ei’›'‹li f!这是事实,也是事实。s I gii ij ’ m J
lull r . " "平面一致性的确定性意味着假定所采用的惯例是一致的
在象征空间里。
因此,在一个符号空间中,符号的缺失标志着现象的缺
失。在一个看得见的框架里或者用它。空间标志在任何一
个节点都有墨水。一个新的 abee rice o1 信号表示没有外
星人。这是图 2 给 e‹ited 的印象。ir‹ition 内的色彩是
整个区域的‹applied,以这样一种方式,空的空间 sidn
ifyal。phenoi4ien‹i ‹ind 的科学不是 at‹i.的科学
在一个符号空间中,任何视觉变量都是有意义的:例如,
引入一种颜色,它的唯一目的是审美或装饰,如果这种颜
色不能对应一个成分,就会导致混淆。在逻辑思维的感知
中,同样的性质包括自发性。可见的差异
在长度上,c‹in 仅被认为是相当大的运输量
在感知上。
例如,在图 3 中。人们必须知道,只有 ccii vcs 斜率的差异
才是平均的。
同样,不同的长度也不一定相等。然而,这种惯例上的改变在
某些情况下是必要的,特别是对于网络(第 275 页)。必须严格告
知读者这一点。
3
46
(3) 平面的组织层次
变量的级别
变量的感知属性决定了它的级别。任何个人都会立即对一
系列“价值观”进行分类,
如图 1 所示,从黑到白,按固定顺序排列:A、B、C、D 或
D、C、B、A,但从不按其他顺序排列。值已排序。但是每
个人 都会 对一 系列 形状 进行 不同 的分 类, 如图 2 所
示 :A , B , C , D , E , 或 者 B , A , D , C , E , 或 者
C,D,B,A,E。形状未排序。
1
因此,一个值的变化能够代表一个指定的成分:也就是说,能够
为任何暗示一个有序的感知方法的问题提供一个简单的视觉反
应。另一方面,阿沙|ae 变异不能代表‹in 或 deed 分量。如果采
用这种变体,涉及订购组件的问题将没有直接的视觉响应(参见
第 34 页)。
每个可视变量的级别可定义如下(参见第 65 页):
当一个变量使我们能够立即分离出属于同一类别(该变量)
的所有对应关系时,它就是选择性的(/)。
这些对应形成了一个“公平的家庭”:红色标志的家庭,绿
色标志的家庭;亮的标志族,暗的标志族:右边的标志族,左
边的标志族。
当一个变量允许由这个变量区分的所有对应的直接分组
时,这个变量就是关联的()。
这些对应被认为是“所有类别的一致性”同样大小的黑
色正方形、三角形和有效圆形可以看作是相似的符
号。“形”是联想的。相同大小的白色、灰色或黑色圆圈
不会被视为相似。“值”是没有联想的。低关联变量将被
称为分离变量(w)。
当一个变量的类别或步骤的直观分类是直接的和通用的
时,这个变量就是有序的。
灰色被认为是介于白色和黑色之间的,‹i 中号被认为是介
于小号和大号之间的;比如说,蓝色、绿色和红色是不一样
的,这三种颜色的价值相等,但不会立即产生一种颜色。
当一个有序成分的两个类别之间的 isu‹il 距离可以直接用
一个数值比率表示时,这个变量就是定量的(q)。
一个长度被认为等于另一个长度的三倍;一个区域是另一个区
域的四分之一。请注意,定量视觉感知没有数字测量的精度(如
果有,毫无疑问,数字就不会被发明)。然而,面对比率大约为 1
比 4 的两个长度,肉眼直接的视觉允许我们确认,被标记的比率
既不是 1/2 也不是 1/10。定量感知是基于 ii 单位的存在,它可
以与变量中的所有类别进行比较。因为白色不能为灰色或黑色提
供计量单位,所以数量关系不能用数值变化来解释。值只能翻译
一个订单。
48
B.
A
DF DE+ EF
S
L
Lx l
平面的组织层次
在视觉变量中,平面提供了唯一的
拥有所有四种感知属性的变量。两个 3
平面尺寸具有最高层次的组织和
因此可以保留信息的任何组成部分。
平面位置的变化是选择性的(4)
两个相似的标记,只是在平面上的位置不同,可以被看作
是不同的(图 3),我们可以立即分离出所有的对应关系,
所有的标记都属于平面的给定部分。获得最佳视觉选择
通过构建分离的图像,并置在 4
平面(例如,参见第 67 页图 2)。
位置的变化是关联的(-)
两个相似的标记,位置不同,也可以被视为
相似(图 3),因此,有可能察觉到 6
一整组点、线或区域,所有位置特征的组合。
命令改变位置(O)
当如图 4 所示对齐时,标记 A、B、C 被排序 7
沿着这 条线,这个顺序会以相同的方式 被普 遍理
解:A、B、C 或 C、B、A,但永远不会是 B、C、A。因
此,对于三个对齐的点,一个在另外两个之间,对于三

汇合直线,一条在另外两条之间。8
这个顺序可以有方向。因此,一个点沿着一条直线
朝一个或另一个方向运动(图 5),一条直线绕着一个
点朝一个或另一个方向旋转(图 5)。
因此,平面允许表示有序的 9
集合、排名或者实际上任何有序的组件。
位置差是定量的(Q)
这涉及到平面的区间和比值性质。
任何人都可以评估图 6-10 中显示的关系
具有一定程度的准确性:
A > C > B A = 2C B = C/2
该平面允许我们定义相等的线段或角度(叠加)以及添
加线段(首尾相连;见图 7),或角度(相邻;参见图
8)。一旦定义了方向,这种加法就具有正数或负数加
法的所有性质。因此,
平面使我们能够感知长度的比例(图 9),12
角度(图 8),或面积(图 13);测量(图 10)或添加(图
13)面积;并且当类别由长度(图 11)、角度(图 12)或面
积(图 13)表示时,表示类别之间的可变距离。
49
(4) 第二组:网络
当平面上的对应可以被“拼版”时,两个平面维度的利用将被称为“拼版”这主要取决于公司的性质:
在平面上表达的反应,使我们能够——在同一个组件的所有部分中,将图形表示分成几个组:图表,结构是一个网络。
网络、地图和符号。
考虑这些信息:不同个体 A、B、C、D 之间的言语关系…一个
团体。
第一组:图表不变——I ve RBA 1 exe/range bet veeti t Evo indi vic lucil . s
组件——客户不同的个人,如 A、B、C、D。
当平面上的对应可以建立时-
设计者必须首先确保任何个人(的
— 一个组件的所有部分“不同的个体”)能够进行对话
—以及另一个组成部分的所有分割,与(同一组成部分的)任何其他个体的结合。这是一个结构图。如图 3 所示。此后,他
或她将记录观察到的构成给定信息的通信
考虑这些信息:股票 X 在巴黎的趋势(图 4)。在目前的情况下,设计师可以尝试交换。如图 1 所示,设计者必须首先简化
图像,对元素进行排序,以确保任何日期(组件、时间)都可以关联,从而获得最可能的交集(图 5)。
任何价格(组件、数量)。之后他还是
她将记录观察到的对应关系,这些对应关系构成了构建与给定信息相反的邻居的过程(图 2)。但是设计者不需要为一个图表画
出轮廓:
确保两个日期之间或(1)以初始方式记录对应关系;
两种价格。(2)从它们中推导出将产生最简单结构(最少)的部件的表示
构建逻辑示意图的过程如下:
(1) 定义组件的表示;
(2) 记录通信。
交叉点)。
要根据上述信息构建 dicipranl,需要添加一个组件。例如,
人们可以认为对应关系是在一系列说话的人和另一系列倾听
的人之间,这两个系列由相同的元素组成。这可以如图 6 和 7
所示。
A
1 OC
日期 6 7

5 克克
2 ’ ’
50


甲 - 乙 K
第三组:地图
当平面上的对应关系可以建立时:
— 在同一组件的所有分区中
— 根据地理顺序排列,网络
描绘出一幅地理地图。
例如,公路的地理目录是由地理系列的元素之间建立的
一组对应关系构成的,通常是按地理顺序排列的一系列
城镇(图 8)。
由于地理网络不能任意重新排序,因此只能通过消
除某些对应关系来简化图像。
构建地图的过程是最简单的:
(1) 复制地理秩序;
(2) 记录给定的对应关系。
它排除了两个平面维度之间的任何选择问题。
但是一系列的城镇显然可以按照一个可重组的网络来安
排,例如一个环形网络。经过适当简化后,如图 9 所
示,网络提供了另一种突出显示节点和集群的方式,同
时显示每个元素的功能。一系列城镇也可以以图表的形
式构建,前提是该系列被表示两次;这允许确定对应关
系的方向,并且如图 10 所示,例如,可以从 C 到 D,或
者从 B 到 A,但是不能从 D 到 C,也不能从 A 到 B
9
第四组:符号
当对应关系不是建立在平面上,而是建立在平面的单
个元素和读者之间时,对应关系就在图形的外部。这
是一个涉及象征的问题,象征通常是基于形状或颜色
的比喻。
这些仅仅是后天习惯的结果,永远不能声称是普遍的(不
像差异、相似、顺序或数量的基本类比)。
公路或铁路标志就是这种情况…在地形、农业、地质或
工业中使用的常规代码…涉及形状或颜色的代码(安全
标志,军事符号…).只有当一个人认出了以前见过的形
状(图 11)或学会了常规形状的标记(图 12)时,它们才有
意义。
图表、网络和地图允许我们通过内部处理将信息简化
为其基本要素,而象征主义像语言一样,只寻求通过
直接识别来解决外部识别的问题。
一般来说,图形符号系统中的任何结构,无论属于哪
一类,都被称为“表征”或“图形”
11
8 12

•.B 4
51
约定 直线的 圆形的;循环的直角的 极地的
图表
网络
地图 搜索引擎优化
标志
拼版拼版类型

拼版组和拼版类型
有了图表和网络,拼版就多种多样;这架飞机可以有
许多不同的用途。组件可以被记录:
— 根据分散在整个平面上的布置
— 或者根据一种构造
— 直线的
— 圆形的;循环的
— 正交(直线)
— 极坐标(圆形和正交)
这些将被称为拼版类型。因此,我们的拼版概念包括第一
阶段,将图形表示分成四组,以及第二阶段
52
阶段,将图表和网络划分为不同的拼版类型(这都显示
在图 1 中)。
视网膜变量的使用,要么代表第三个组成部分,要么
取代平面维度之一,产生“高度”,它可以与所有类型
的拼版相结合,以形成各种类型的结构。
注意图表或网络的各种可能的结构;这就提出了一个
选择结构的问题,而这在制图学中是不存在的。
主要的建筑类型如图所示
这将在后面发展(见 172 和 270 页),形成一个能够定义
或分析任何图形结构的约定系统。



14
13
包含两个部分的图的主要结构类型
直线结构
在图 1 中,一条直线代表事故受害者的总数。它被分
成与每个类别中的数量成比例的部分。因此,分量 Q
和分量 4 被描绘在同一轴上。
在图 2、4 和 5 中,定性组件“不同的车辆”可以通过
使用每个类别中的数量来重新排序。直线的宽度没有数
值意义;它只是呈现直线可见的手段。
在这些例子中,描绘了总数,我们用一条横线穿过箭
头示意性地表示出来。不使用平面的第二维度;它仍然
可用于表示信息中引入的任何其他成分。

正交结构
如图 3 所示,如果部分量没有相加,而是与同一个基数有
关,我们必须采用一种区分的方法,这种方法可以识别
各部分。最简单的方法是将它们并置(图 6-10)。这种相
邻的位置形成了一种正交结构,其中平面的每个维度代
表一个分量。
在这些例子中,总数没有画出来,但是不同的部分很容
易比较。
直线标高
在图 11 中,面积与数量成正比。
符号是相似的(恒定比例的同源边)。
线性尺寸与 q 成正比。因此,平面的第二维不代表
数量。这些都是由面积的大小,“黑”的量来描绘
的;也就是说,分量 Q 由视网膜变化(“大小”的变
化)表示。我们指出这一点
15 通过使用倾斜箭头。
这些量也可以沿着直线并列
线,如图 11、12 和 13 所示,或者叠加,如图 14 和
15 所示。然而,没有描绘出总数,并且很难对各部
分进行比较。
54
17
20
圆形结构
通过弯曲图 1 中的结构,我们得到了如图 18 所示的图
形。这种结构是直线结构的圆形版本。描绘了总数。
当构成一个圆面积的量被赋予相等的半径时,这些量
由它们在圆周上的长度和它们在中心的角度来表示(图
16)。
眼睛在判断这个角度时获得了很高的精度(图 17 和
19),这比圆形长度更容易掌握(图 18)。
极性结构
通过弯曲图 6 中的结构,我们得到图 20。极坐标结构是
直角坐标结构的圆形版本。总数没有描绘出来,各部分
也不容易比较(图 21 和 22)。
圆形立面
通过弯曲图 11 中的结构,我们得到图 24。通过比较图 23
和 26,或图 22 和 27,可以说明这种结构和极坐标结构之
间的区别。圆形结构通常如图 25 所示。圆用于帮助识别零
件,其面积与 q 成比例。
这些主要的结构类型允许对第 53 页上的所有图纸进行
分类,事实上,也允许对所有平面结构进行分类。它们
的多样性提出了一个选择的问题,这个问题只能通过效
率的概念和由此产生的建设规则来解决。
我们将在后面的图表(根据 195 页的感知特性分类)和
网络(270 页)中讨论这些结构。
55
水平和位置表
组件的组织级别
其元素都可以被认为是
相似的组件
定性成分
(差异)
有序组件
(不可再订购)
数量
%百分比
对数标度上的数

按数量订购的可再订购组件
考试 PLES
部门
产品棉花 真丝羊毛线
O 时间
丝绸 李羊毛 1 吨
O(9)
MENT部分工作日志数量
人在
平面尺寸的利用 例子
事故数量
车辆
自行车(B)四轮
车辆(F)
oI acc idenis

事故
"男人 WOM 恩
性别 X 2
车辆
数量
ol 事故
ol aC demts
基因谱系学
网络
直线利用
匀质方式中使用的平面尺寸
(一劳永逸地建立类别)
W 以异质方式使用的平面尺寸(类别
重复多次)
x n aa$ > n 表示图像或图形的数量
代表累积量的平面的维数
循环利用
飞机的
树的排列
视网膜变量
(解读为平面上方的“标
高”)
点、线或区域 l
(未区分)A
种类
成年
Ve hicIe

事故
Jfi- 4 9
P B M F
第三书记官
卢瓦尔河大西洋
9 2 6 3 37
种类
数量
类别
数量
飞机的利用
在制图学中,地理部分占据两个平面维度。请考虑以下信息:
不变——拥有 500 名以上雇员的企业中的受薪工人
组件—Q_(以千名受薪工人为单位),根据
我在布里坦有五个部门
该信息有两个组成部分。其图形表示必须利用至少两个
变量,并且根据结构类型,将产生图表(图 1、2 或 3)。
然而,质量部分是地理性质的。各种类别在空间上被定
义—它们是部门—并且这些信息也可以生成地图(图 4)。
在这种表述中,请读者
58
从飞机上看,在自然地图上叠加一些看不见但“真
实”的元素。
读者被邀请去感知这张纸,不是作为一种媒介,而
是作为一个地理空间。纸的表面象征着地球的表面;
一个很好的类比,因为空间是用来表示空间的。
这比最初在图 1、2 和 3 中使用的类比,或者说,平
面维度与时间的对应,更自然、更容易理解。也许这
解释了为什么比图表早几千年就使用形象化的表现和
制图,图表的类比意味着更高程度的抽象。
然而,这种自然的类比是以完全利用两个平面维度
为代价获得的,它没有留下平面维度来表示这些量。
他们必须从属于地理
数量
安排。对数量的理解不再像图 1 和图 2 那样基于整体的
并列元件的比较,也不再像图 3 那样基于沿底部排列的
元件的长度差异。他们的感知必须依靠其他视觉变量,
依靠新的“刺激”,只要平面尺寸足以表现,就不考虑
其效用。在图 4 中,与其说是柱子的高度,不如说是允
许感知数量的“黑色”的数量。随着信件数量的增加,
这变得更加明显(第 360 和 374 页)。
当两个分量占据平面时,我们必须寻找新的变量来表
示附加分量。这些是“升高的”或“视网膜的”变量。
59
中国。
正常男性染色体组型
长狭潮道
大小
以及它的可数变体
价值
9 6
C. 视网膜变量
随着信息中第三成分的引入(或制图中的第二成分),图
形表示必须利用视网膜变量。
平面“上方”的视觉变化
实验心理学将深度知觉定义为多种因素的结果:
— 双目视觉,在几米的范围内
— 当观察者移动时,物体的明显移动
— 已知物体尺寸的减小
— 已知对比度 1 的值的减少
— 物体的已知纹理的减少
— 已知物体颜色饱和度的降低
— 方向和形状的变形(透视)。
除了前两个,所有这些变化都由图形设计人员处理,例
如,他们可以使用它们来添加第三个组件到图 1 的组件
中。设计者可以将附加部件的类别与这些变量中的任何一
个联系起来:
— 大小的分类:列的高度,等号的面积(图
2)
一个标志,2
— 值的类别,白色和黑色之间的各种程度(图 3)
60
纹理
37
科洛伊特
方向
形状
答答
37 9 6 3 2
—纹理类别,即具有给定值的区域成分的精细度或粗度的变化
(图 4)。这种变化可以通过以下方式获得
4 放大或缩小直纹摄影屏幕
— 颜色的类别(色调),使用彩色的剧目
5 可以产生同等价值的感觉(图 5)
— 方向类别,线条或线条图案的各种方向,从垂直
到水平
6 不同方向上的水平(图 6)
— 形状的分类,因为一个大小不变的标记可以有
无限多种不同的形状(图 7)。
因此,任何视网膜变量都可以用于表示任何成分。但
是很明显,每个变量并不适合每个组件。这是有机层
次的概念
7 这提供了解决这个问题的关键。
61
10 84
71
29 33
14 42 24 20
21 14
Q 我
大小
企业的
8
B Q =大小
5
9
B =值
10
B Q —纹理
11
平面尺寸和“视网膜”变量
视网膜视觉变量的使用不仅仅是制图术所要求的。在所
有涉及三个或三个以上部件的图形问题中,当平面的两
个维度已经被利用时,这是必要的。
考虑一下这些信息:根据经济分支和企业规模分配的
工资总额。不变量—按企业分配的工资金额组成部分—
4 经济的五个分支(商业,
能源、运输、工业、服务)
—Q(工资)按经济部门的百分比,根据
—O 五、商业企业规模—类别(0,1—5,d
—100,10I—500,500 以上
员工)
数量如图 1 所示。如在 Brit- tany 的地图中(图 1,
第 60 页),利用了平面的两个维度;一个轴是分支机
构,另一个轴是企业的规模。视网膜变量必须被调用一

62
再次表示数量,如图 2-7 所示。为了选择最佳表示,我们
必须确定平面维度与这些变量的区别以及不同视网膜变量
的特征。
当平面维度代表信息的两个组成部分时,它们就构成了一个
图像,图像的组织和基本形式就一劳永逸地建立起来了。它们
赋予平面一种意义,可以转化为数量、类别、时间(在图表中)
或空间(在地图中)。它们也定义了视野。越过它的框架,飞机
再次变成一张纸;它不再有意义,或者它改变了意义以支持另
一个图像。视觉“扫描”因此涉及;读者通过眼球运动来感知
平面维度。对平面的整体感知取决于视觉系统的“肌肉”反
应。
视网膜变量记录在平面的“上方”,并且独立于平面。
眼睛无需运动就能察觉它们的变化。
因此可以想象一个框架(图 8)


B Q =的方向 B Q =形状
S S S
12 13 14
每个 v‹u’iable 的不同前指会在同一个地方连续出现。这显示
在图 9-14 中。为了区分这两个前那不勒斯球员,我们不需要
任何证据。这些 v‹ii’iables 依赖于两种视觉反应中的任何一
种,而 sc‹in·宁似乎没有以明显的方式暗示‹i。
为了把它们从“逻辑”中剔除出去,我们将在这里使
用“合理的”response nil
‹ 1 '视网膜八叶。
在 ordin‹ii’y 感知的尺度上,只有 wla icli 与我们的生活
息息相关,而 vari‹ibles 的生理变化与计划中提到的完全一
致。然而,它是 l‹u’ge 的一部分
{这不是一个话题,它超出了我的想象,它不是一个观点。人们必须
把注意力放在“纳爱斯库莱”运动上,而这个壶在我看来是不可或缺
的。现在我们来解释这些相关变量的概念。

图例示意

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序scroll-view隐藏滚动条参数不生效问题

如题&#xff0c;先来看看问题是怎么出现的。 先看文档如何隐藏滚动条&#xff1a; 再根据文档实现wxml文件&#xff1a; <scroll-view show-scrollbar"{{false}}" enhanced><view wx:for"{{1000}}">11111</view> </scroll-view>…

pytorch异常——RuntimeError:Given groups=1, weight of size..., expected of...

文章目录 省流异常报错异常截图异常代码原因解释修正代码执行结果 省流 nn.Conv2d 需要的输入张量格式为 (batch_size, channels, height, width)&#xff0c;但您的示例输入张量 x 是 (batch_size, height, width, channels)。因此&#xff0c;需要对输入张量进行转置。 注意…

探索未知世界:桌面端3D GIS引领地理信息新时代

近年来&#xff0c;桌面端的三维地理信息系统&#xff08;3D GIS&#xff09;在地理信息领域迎来了显著的发展&#xff0c;为我们带来了更深入、更丰富的地理空间认知和数据分析体验。从城市规划到环境保护&#xff0c;从资源管理到应急响应&#xff0c;桌面端的3D GIS正逐渐成…

day 30 动态GDP柱状图绘制

列表.sort(key选择排序依据的函数&#xff0c;reverseTrue|False) 参数key:要求传入一个函数&#xff0c;表示将列表的每一个元素传入函数当中&#xff0c;返回排序的依据&#xff0c; 参数reverse,是否反转排序结果&#xff0c;True降序&#xff0c;False升序 my_list [[&…

【爬虫小知识】如何利用爬虫爬网页——python爬虫

前言 网络时代的到来&#xff0c;给我们提供了海量的信息资源&#xff0c;但是&#xff0c;想要获取这些信息&#xff0c;手动一个一个网页进行查找&#xff0c;无疑是一项繁琐且效率低下的工作。这时&#xff0c;爬虫技术的出现&#xff0c;为我们提供了一种高效的方式去获取…

Android JNI系列详解之生成指定CPU的库文件

一、前提 这次主要了解Android的cpu架构类型&#xff0c;以及在使用CMake工具的时候&#xff0c;如何指定生成哪种类型的库文件。 如上图所示&#xff0c;是我们之前使用CMake工具默认生成的四种cpu架构的动态库文件&#xff1a;arm64-v8a、armeabi-v7a、x86、x86_64&#xff0…

【附安装包】MyEclipse2019安装教程

软件下载 软件&#xff1a;MyEclipse版本&#xff1a;2019语言&#xff1a;简体中文大小&#xff1a;1.86G安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.5GHz 内存4G(或更高&#xff09;下载通道①百度网盘丨下载链接&#xff1a;https://pan.baidu.co…

系统架构师---系统规划

目录 前言&#xff1a; 项目的提出与选择 项目立项的目标和动机 进行基础研究并获取技术 进行应用研发并获得产品 提供技术服务 信息技术产品的使用者 项目的选择和确定 选择有核心价值的产品、项目或可开发方向 评估项目风险、收益和代价 评估项目的多种实施方式 平…

app.js和页面.js 实现全局传参

实现全局传参的几个步骤&#xff1a;1. 在页面.js文件中 输入 const appgetApp() 2.便可以在页面中引用app.js中的globalData中的数据。 注意点&#xff1a;app.js中是使用的是this.globalData (调用自身的数据&#xff09; 页面.js中使用的是app.globalData&#xff08;引用ap…

国产系统下开发QT程序总结

国产系统下开发QT程序总结 1. 国产系统简介 开发国产系统客户端的过程中&#xff0c;会出现兼容性问题。以下介绍Kylin和UOS环境下开发QT程序&#xff0c; 首先麒麟和统信这两个系统基于Ubuntu开发的。所以在Ubuntu开发理论上在国产系统上也能运行。芯片架构又分为amd,arm,mi…

vue v-for 例子

vue v-for 例子 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head&…

ArcGIS学习总结(19)——要素转点与空间连接(属性表字段映射)

1.在新创建的面矢量数据的属性表中没有对应的字段信息&#xff0c;为了能够和有属性信息的数据进行匹配&#xff0c;使其具有对应字段的信息。 2.需要匹配的矢量文件属性表信息。 3.对新创建的矢量文件执行要素转点&#xff1a;数据管理工具→要素→要素转点。 4.选择分析工…

AI聊天机器人平台Poe发布更新;自然语言理解课程概要

&#x1f989; AI新闻 &#x1f680; AI聊天机器人平台Poe发布更新 突破功能限制 增加企业级服务 摘要&#xff1a;知名问答网站Quora旗下的AI聊天机器人平台Poe发布了一系列更新&#xff0c;包括推出Mac应用、支持同时进行多个对话、接入Meta的Llama 2模型等功能。用户只需支…

Shell 脚本入门

目录 一、Shell是什么 1.1 我们为什么要学习Shell和使用Shell&#xff1f; 1.2 Shell的分类有哪些&#xff1f; 二、Shell脚本入门知识 2.1 Shell文件命名规范 2.2 Shell解析器 2.3 用Shell 编写hello World 三、Shell的四种变量类型 3.1 系统预定义变量 3.2 自定义变…

(笔记二)利用opencv调用鼠标事件在图像上绘制图形

目录 &#xff08;1&#xff09;查看cv2所支持的鼠标事件&#xff08;2&#xff09;通过鼠标事件在图像上做标记&#xff08;3&#xff09;高级操作&#xff1a;通过移动鼠标在图像绘制图形、曲线 该功能主要创建一个鼠标事件发生时执行的回调函数。鼠标事件可以是任何与鼠标有…

【OpenCV实战】3.OpenCV颜色空间实战

OpenCV颜色空间实战 〇、Coding实战内容一、imread1.1 函数介绍1.2 Flags1.3 Code 二. 色彩空间2.1 获取单色空间2.2. HSV、YUV、RGB2.3. 不同颜色空间应用场景 〇、Coding实战内容 OpenCV imread()方法不同的flags差异性获取单色通道【R通道、G通道、B通道】HSV、YUV、RGB 一…

Prompt GPT推荐社区

大家好&#xff0c;我是荷逸&#xff0c;这次给大家带来的是我日常学习Prompt社区推荐 Snack Prompt 访问地址&#xff1a;http://snackprompt.com Snack Prompt是一个采用的Prompts诱导填空式的社区&#xff0c;它提供了一种简单的prompt修改方式&#xff0c;你只需要输入关…

MindsDB为许多不支持内置机器学习的数据库带来了机器学习功能

选择平台的首要原则是“靠近数据”,让代码靠近数据是保持低延迟的必要条件。 机器学习,特别是深度学习往往会多次遍历所有数据(遍历一次被称为一个epoch)。对于非常大的数据集来说,理想的情况是在存储数据的地方建立模型,这样就不需要大量的数据传输。目前已经有部分数据…

Doris最大链接数优化

问题背景&#xff1a; 用户在使用Doris的时候&#xff0c;当访问用户过多时会报Reach limit of connections&#xff0c;针对这种情况需要调整Doris最大连接数&#xff0c;具体做法如下。 解决办法&#xff1a; Session变量设置 SET PROPERTY FOR root max_user_connection…

蓝蓝设计ui设计公司作品案例-中节能现金流抗压测试软件交互及界面设计

中国节能是以节能环保为主业的中央企业。中国节能以生态文明建设为己任&#xff0c;长期致力于让天更蓝、山更绿、水更清&#xff0c;让生活更美好。经过多年发展&#xff0c;中国节能已构建起以节能、环保、清洁能源、健康和节能环保综合服务为主业的41产业格局&#xff0c;成…