Super Resolve Dynamic Scene from Continuous Spike Streams论文笔记

摘要

近期,脉冲相机在记录高动态场景中展示了其优越的潜力。不像传统相机将一个曝光时间内的视觉信息进行压缩成像,脉冲相机连续地输出二的脉冲流来记录动态场景,因此拥有极高的时间分辨率。而现有的脉冲相机重建方法主要集中在重建和脉冲相机相同分辨率的图像上。然而,作为高时间分辨率的权衡,脉冲相机的空间分辨率是有限的。为了处理这一问题,我们设计了一种脉冲相机超分辨率框架,旨在从低分辨率的二值脉冲流中得到超分辨率的光强图像。由于相机和捕捉物体之间的相对运动,传感器同一像素上激发的脉冲无法形容外在场景中的相同点。本文利用相对运动,推导出光强与每个脉冲之间的关系,以恢复高时间分辨率和高空间分辨率的外部场景。实验结果表明,该方法可以从低分辨率的脉冲流中重建出良好的高分辨率图像。

介绍

随着实时计算机视觉应用的发展,传统数码相机的缺点逐渐暴露。传统相机通常在一个曝光窗口内积累光电信息来形成快照帧。这样的的成像原理可以为静态场景产出富含细节的清晰图片。然而,对于拥有高速移动的动态场景,移动物体上的某一点会被投影到传感器的不同像素点上,导致运动模糊。

为了解决这一问题,脉冲相机被提出。脉冲相机可以持续地监控到达的光子并且激发连续的脉冲流,从而记录高分辨率的动态场景。相比于事件相机,脉冲相机可以记录绝对的光照强度而不是相对光强变化。

在本文中,我们针对脉冲相机设计了一种全新的图像重建框架。通过利用相对运动,我们可以恢复场景的分辨率远远高于由脉冲流直接提供的分辨率。我们仔细分析了脉冲相机的成像原理,基于脉冲相机成像原理,构建了图像光强和每个脉冲之间的关系,从而可以从脉冲流中得到超像素的光强信息。文章的主要贡献如下:
1、我们为脉冲相机提出了一种超分辨率框架。
2、我们不是简单地将图像超分辨率算法应用于脉冲相机的LR(低分辨率,low resolution)重建,而是推导出光强与每个脉冲之间的关系,从而从买从流中估计像素级的超分辨率光强。
3、实验结果显示所提出的方法可以从二值LR脉冲流中重建出不错的HR光强图像,这是现有方法做不到的。

背景知识

脉冲相机的工作机制

脉冲相机包含了一系列的像素点,每一个像素点独立地记录光照强度。每一个像素包含三个主要的部分:感光器、积分器和比较器。感光器从外部场景捕获入射光,并将光强转换为积分器可以识别的电压。积分器对转化而来的电荷做累加,比较器持续地检测积累的信号。一旦达到阈值 θ \theta θ,脉冲则会被激发,积分器重置,开始新一轮的“积累与发射”循环。

由于每一个像素独立工作,我们可以将我们的讨论限定在一个像素 p = ( r , c ) p=(r,c) p=(r,c)上。 p p p t t t时刻的电荷量可以表示为:
A ( t ) = ∫ Ω p ∫ 0 t α ⋅ I ( z , x ) d x d z m o d θ (1) A(t)=\int_{\Omega_p}\int_0^t\alpha\cdot I(z,x)dxdz\mod\theta\tag{1} A(t)=Ωp0tαI(z,x)dxdzmodθ(1)
这里, Ω p \Omega_p Ωp表示像素 p p p包含的空间区域, I ( z , t ) I(z,t) I(z,t)表示 t t t时刻 z = ( x , y ) z=(x,y) z=(x,y)位置上的光照强度, α \alpha α表示光电转化效率。脉冲可以在任意的时间 t t t被激发,但是相机只能以离散时间二值信号 S ( n ) S(n) S(n)的形式读出脉冲(如图二所示)。具体来说,相机以一个固定的短时间间隙 T T T来检查flag,如果 t t t时刻(其中 ( ( n − 1 ) T < t ≤ n T ) ((n-1)T<t≤nT) ((n1)T<tnT))有flag,则 S ( n ) = 1 S(n)=1 S(n)=1。否则, S ( n ) = 0 S(n)=0 S(n)=0。当光子连续到达时,传感器上的像素会同时独立地进行工作,激发出脉冲来表示特定数量光子的到达。随着时间的推进,相机会产生一些列的二值脉冲 S ∈ { 0 , 1 } H × W × N S\in \{0,1\}^{H\times W\times N } S{0,1}H×W×N(如图一(a)所示)。
在这里插入图片描述

在这里插入图片描述

问题描述

脉冲相机的目的是记录高速运动场景的动态光强变化过程。一旦脉冲阵列被捕捉到,我们旨在恢复出任何时刻的瞬时光强。特别是当考虑到脉冲相机有限的空间分辨率,我们的目标是超分辨高质量的光强图像与细节。我们没有采用简单结合脉冲重建算法和现有图像超分辨率算法的方法,而是直接估计每一个像素对应的超分辨率强度。这是一个病态的逆问题,可以表示为如下的形式。给定脉冲阵列 S ∈ { 0 , 1 } H × W × N S\in\{0,1\}^{H\times W\times N } S{0,1}H×W×N,我们的目标是从低分辨率的脉冲阵列中恢复高质量的高分辨率强度图像 I H D ∈ [ 0 , 255 ] c H × c W × c N I^{HD}\in[0,255]^{cH\times cW\times cN } IHD[0,255]cH×cW×cN,其中 c c c是放大因子。

方法

如图三所示,由于相机和物体之间的相对运动,传感器同一像素所激发的脉冲不再能描述物体上的相同点,而是记录了不同位置的光强。也就是说每一个脉冲会被映射到场景中的不同位置。通过合理地探索相机和场景之间的相对运动,恢复更高分辨率的场景是可能的。为此,我们开发了一个运动引导的脉冲相机超分辨率(MGSR, motion-guided spike camera super-resolution)框架,以从低分辨率的脉冲流中得到超分辨率图像。
在这里插入图片描述

强度脉冲关系

每一个脉冲对应了一定量的光子 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te),其中 p = ( r , c ) p=(r,c) p=(r,c)表示像素的位置, t s t_s ts t e t_e te分别表示当前脉冲循环的开始和结束时间。基于公式(1),脉冲 s s s和强度 I I I之间的关系可以表示为:
θ = ∫ Ω p ∫ t s t e α ⋅ I ( z , t ) d t d z (2) \theta=\int_{\Omega_p}\int_{t_s}^{t_e}\alpha\cdot I(z,t)dtdz\tag{2} θ=ΩptsteαI(z,t)dtdz(2)
假设我们打算重建 k k k时刻的场景。基于灰度一致性假设,给定任意时刻某一点的光强 I ( z , t ) I(z,t) I(z,t),都可以将其转换为 k k k时刻对应物体点的光强 I ( z + u t → k ( z ) , k ) I(z+u_{t\rightarrow k}(z),k) I(z+utk(z),k)。其中 u t → k ( z ) u_{t\rightarrow k}(z) utk(z)表示将 t t t时刻上 z z z位置映射到 k k k时刻对应位置的偏移量。因此,我们可以构建场景强度和任意脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)之间的模型:
θ = ∫ Ω p ∫ t s t e α ⋅ I ( z , k ) M s ( z , t ) d t d z (3) \theta=\int_{\Omega_p}\int_{t_s}^{t_e}\alpha\cdot I(z,k)\mathcal{M}_s(z,t)dtdz\tag{3} θ=ΩptsteαI(z,k)Ms(z,t)dtdz(3)
这里, Ω \Omega Ω表示相机传感器的感受野, I ( z , k ) I(z,k) I(z,k)表示 k k k时刻 z z z位置的光强, M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)是二值mask,表示强度 I ( z , k ) I(z,k) I(z,k)是否对 t t t时刻的脉冲 s s s有贡献。也就是说,如果 z z z的对应点 z + u k → t ( z ) z+u_{k\rightarrow t}(z) z+ukt(z)处在像素 p p p包含的空间区域,则 I ( z , k ) I(z,k) I(z,k)对像素有贡献,将 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)设置为1。否则 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)被设为0。从而可以得到 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)的表达式:
M s ( z , t ) = { 1 , z + u k → t ( z ) ∈ Ω p 0 , o t h e r w i s e (4) \mathcal{M}_s(z,t)=\begin{cases} 1, \quad z+u_{k\rightarrow t}(z)\in \Omega_{p}\\ 0, \quad otherwise\\ \end{cases}\tag{4} Ms(z,t)={1,z+ukt(z)Ωp0,otherwise(4)
其中 Ω p \Omega_p Ωp表示 p p p覆盖的空间区域。为了简单起见,我们使用 I k I_k Ik来表示 k k k时刻场景的光照强度。考虑到 I k ( z ) I_k(z) Ik(z)在时间上的连续性,公式(3)可以改写成:
θ = ∫ Ω ∫ t s t e α ⋅ I k ( z ) ⋅ M s ( z , t ) d t d z = ∫ Ω α ⋅ I k ( z ) ( ∫ t s t e M s ( z , t ) d t ) d z = ∫ Ω α ⋅ I k ( z ) ⋅ W s ( z ) d z (5) \theta=\int_{\Omega}\int_{t_s}^{t_e}\alpha\cdot I_k(z)\cdot \mathcal{M}_s(z,t)dtdz=\int_{\Omega}\alpha\cdot I_k(z)(\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dt)dz=\int_{\Omega}\alpha\cdot I_k(z)\cdot \mathcal{W}_s(z)dz\tag{5} θ=ΩtsteαIk(z)Ms(z,t)dtdz=ΩαIk(z)(tsteMs(z,t)dt)dz=ΩαIk(z)Ws(z)dz(5)
其中 W s ( z ) = ∫ t s t e M s ( z , t ) d t \mathcal{W}_s(z)=\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dt Ws(z)=tsteMs(z,t)dt代表 I k ( z ) I_k(z) Ik(z)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度。

脉冲相机超像素

基于以上的分析,任意的 I k ( z ) I_k(z) Ik(z)和脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)之间的关系可以被建模。为了超像素化光强图像,我们可以对重建平面进行重采样,建立如下的关系:
θ = ∑ q α ⋅ I k H R ( q ) ⋅ W s ( q ) (6) \theta=\sum_q\alpha\cdot I_k^{HR}(q)\cdot\mathcal{W}_s(q)\tag{6} θ=qαIkHR(q)Ws(q)(6)
这里 q = ( m , n ) q=(m,n) q=(m,n)表示 I k H R I_k^{HR} IkHR的坐标位置, W s ( q ) \mathcal{W}_s(q) Ws(q)表示 I k H R ( q ) I_k^{HR}(q) IkHR(q)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度。一旦在 k k k时刻附近有足够的脉冲被积累,我们可以通过最小化下面的损失函数 J ( I K h r ) J(I_K^{hr}) J(IKhr)来超分辨率化 I k H R I_k^{HR} IkHR
J ( I K H R ) = ∑ s = 1 N ∣ ∣ α ⋅ W s I k H R − θ ∣ ∣ 2 2 (7) J(I_K^{HR})=\sum_{s=1}^N||\alpha\cdot\mathcal{W}_sI_k^{HR}-\theta||_2^2\tag{7} J(IKHR)=s=1N∣∣αWsIkHRθ22(7)
其中 N N N表示选定时间框内的脉冲数量。 W s ∈ R 1 × M \mathcal{W}_s\in\mathbb{R}^{1\times M} WsR1×M M = c H × c W M=cH\times cW M=cH×cW表示待重建的高分辨率图像中的像素个数。

为了解决这一问题,我们设计了一种运动辅助的脉冲相机超分辨率(MGSR, motion-guided spike camera super resolution)框架,如图四所示。
在这里插入图片描述
首先,一个基础的亮度推测算法被运用在脉冲流 S S S中,生成一系列基础的亮度图像 { I t L R } , t ∈ ϕ k \{I_t^{LR}\},t\in\phi_k {ItLR},tϕk ϕ k \phi_k ϕk的一个典型选择是 { k , k ± 1 , k ± 2 , ⋅ ⋅ ⋅ } \{k,k±1,k±2,\cdot\cdot\cdot\} {k,k±1,k±2,}。有了基础的重建,我们可以估计出不同帧的位移量并且将 I k H R I_k^{HR} IkHR上的点映射到其他帧中。然后我们可以进一步计算出每个亮度图像像素 I k H R ( q ) I_k^{HR}(q) IkHR(q)对每个脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度(这里 q q q指的是图像上的像素点, p p p指的是传感器上的像素点,可以通过图5或者更加直观的理解),构建出一系列的贡献图 { W s } \{\mathcal{W}_s\} {Ws}。基于贡献图 { W s } \{\mathcal{W}_s\} {Ws},高分辨率图像 I H R I^{HR} IHR可以通过求解公式(7)得到。
在这里插入图片描述

光强推测

假设一个短脉冲间隔内的光照强度是稳定的,我们粗略地推测出瞬时光强:
I t L R ( p ) = θ α ⋅ ( t e − t s ) (8) I_t^{LR}(p)=\frac{\theta}{\alpha\cdot(t_e-t_s)}\tag{8} ItLR(p)=α(tets)θ(8)
其中, t e < t < t s t_e<t<t_s te<t<ts。值得注意的是,这些基本的重建只是用来估计相对运动。

运动估计

我们使用光流法来进行粗略估计,从而得到关键帧 I k L R I_k^{LR} IkLR到参考帧 I t L R I_t^{LR} ItLR的运动场信息:
u k → t = F ( I k L R , I t L R ) (9) u_{k\rightarrow t}=\mathcal{F}(I_k^{LR},I_t^{LR})\tag{9} ukt=F(IkLR,ItLR)(9)
其中 F ( ⋅ ) \mathcal{F}(\cdot) F()表示光流法。 u k → t = ( u k → t h , u k → t v ) u_{k\rightarrow t}=(u_{k\rightarrow t}^h,u_{k\rightarrow t}^v) ukt=(ukth,uktv)表示 I k L R I_k^{LR} IkLR I t L R I_t^{LR} ItLR的运动场信息,可以将 I k L R I_k^{LR} IkLR映射到 I t L R I_t^{LR} ItLR

权重计算

给定运动场信息 u k → t u_{k\rightarrow t} ukt,给定任意点 z z z,我们都可以轻松地根据公式(4)推断出是否 I k H R ( z ) I_k^{HR}(z) IkHR(z)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)有贡献。然后可以计算出每个图像像素 I k H R ( q ) I_k^{HR}(q) IkHR(q)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的权重(贡献程度):
W s ( q ) = ∫ z ∈ Ω q ∫ t s t e M s ( z , t ) d t d z (10) \mathcal{W}_s(q)=\int_{z\in \Omega_q}\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dtdz\tag{10} Ws(q)=zΩqtsteMs(z,t)dtdz(10)
其中 Ω q \Omega_q Ωq表示像素 q q q I k H R I_k^{HR} IkHR中覆盖的范围。由于相机和场景的相对运动,一个脉冲通常通常和和 I k H R I_k^{HR} IkHR中的多个像素有关。相关像素的数量也会随着运动速度和脉冲生命周期 t e − t s t_e-t_s tets的增加而增加。图5展示了权重的计算,图6真实了不同相对运动对应的权重图。
在这里插入图片描述

超像素成像

一旦足够的脉冲被积累,我们可以通过解公式(7)来得到 c H × c W cH\times cW cH×cW的超像素图像。在本文中,我们使用了梯度下降法来求解这个问题,可以被表示为:
I k H R : = I K H R − γ ⋅ ∇ I k H R J ( I k H R ; W s ) (11) I_k^{HR}:=I_K^{HR}-\gamma\cdot\nabla_{I_k^{HR}}J(I_k^{HR};\mathcal{W}_s)\tag{11} IkHR:=IKHRγIkHRJ(IkHR;Ws)(11)
其中 γ \gamma γ是更新梯度。特别地,我们也可以使用这个算法作为一个一般的重建算法,此时我们可以将 c c c设置为1,以重建与脉冲流相同空间分辨率的图像。在算法1中总结了所提出的MGSR方法。
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117334.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言入门 Day_12 一维数组0

目录 前言 1.创建一维数组 2.使用一维数组 3.易错点 4.思维导图 前言 存储一个数据的时候我们可以使用变量&#xff0c; 比如这里我们定义一个记录语文考试分数的变量chinese_score&#xff0c;并给它赋值一个浮点数&#xff08;float&#xff09;。 float chinese_scoe…

解决WebSocket通信:前端拿不到最后一条数据的问题

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

CTFhub-SSRF-内网访问

CTFHub 环境实例 | 提示信息 http://challenge-8bf41c5c86a8c5f4.sandbox.ctfhub.com:10800/?url_ 根据提示&#xff0c;在url 后门添加 127.0.0.1/flag.php http://challenge-8bf41c5c86a8c5f4.sandbox.ctfhub.com:10800/?url127.0.0.1/flag.php ctfhub{a6bb51530c8f6be0…

自动化运维:Ansible之playbook基于ROLES部署LNMP平台

目录 一、理论 1.playbook剧本 2.ROLES角色 3.关系 4.Roles模块搭建LNMP架构 二、实验 1.Roles模块搭建LNMP架构 三、问题 1.剧本启动php报错语法问题 2.剧本启动mysql报错语法问题 3.剧本启动nginx开启失败 4.剧本安装php失败 5.使用yum时报错 6.rpm -Uvh https…

springsecurity+oauth 分布式认证授权笔记总结12

一 springsecurity实现权限认证的笔记 1.1 springsecurity的作用 springsecurity两大核心功能是认证和授权&#xff0c;通过usernamepasswordAuthenticationFilter进行认证&#xff1b;通过filtersecurityintercepter进行授权。springsecurity其实多个filter过滤链进行过滤。…

11 - 深入了解NIO的优化实现原理

Tomcat 中经常被提到的一个调优就是修改线程的 I/O 模型。Tomcat 8.5 版本之前&#xff0c;默认情况下使用的是 BIO 线程模型&#xff0c;如果在高负载、高并发的场景下&#xff0c;可以通过设置 NIO 线程模型&#xff0c;来提高系统的网络通信性能。 我们可以通过一个性能对比…

STM32f103入门(8)TIM输入捕获输入捕获测频率PWMI测占空比

TIM输入捕获 频率测量输入捕获基本结构PWMI基本结构主从触发模式输入捕获测量频率PWMI测占空比 频率测量 输入捕获基本结构 CNT计数一个周期&#xff0c;转运到CCR1里面去&#xff0c;CNT0 这时候CCR1N FxFc/N Fc cnt的驱动时钟 这时候就可以得到频率 Fc72M/PSC PWMI基本结构 …

设计模式之组合模式

文章目录 一、介绍二、案例 一、介绍 组合模式(Composite Pattern)&#xff0c;属于结构型设计模式。组合模式常用于树形的数据结构&#xff0c;比如&#xff1a;多级菜单、部门层级关系、html文本中的dom树。它的特点是使用户对单个对象和组合对象的使用是相同的。 二、案例…

mac制作ssl证书|生成自签名证书,nodejs+express在mac上搭建https+wss(websocket)服务器

注意 mac 自带 openssl 所以没必要像 windows 一样先安装 openssl&#xff0c;直接生成即可 生成 ssl/自签名 证书 生成 key # 生成rsa私钥&#xff0c;des3算法&#xff0c;server_ssl.key是秘钥文件名 1024位强度 openssl genrsa -des3 -out server_ssl.key 1024让输入两…

走进低代码平台| iVX-困境之中如何突破传统

前言&#xff1a; “工欲善其事,必先利其器”&#xff0c;找到和使用一个优质的工具平台&#xff0c;往往会事半功倍。 文章目录 1️⃣认识走近低代码2️⃣传统的低代码开发3️⃣无代码编辑平台一个代码生成式低代码产品iVX受面性广支持代码复用如何使用&#xff1f; 4️⃣总结…

如何自定义iview树形下拉内的内容

1.使用render函数给第一层父级定义 2. 使用树形结构中的render函数来定义子组件 renderContent(h, {root, node, data}) {return data.children.length0? h(span, {style: {display: inline-block,width: 400px,lineHeight: 32px}}, [h(span, [h(Icon, {type: ios-paper-outli…

PY32F003F18P单片机概述

PY32F003F18P单片机是普冉的一款ARM微控制器&#xff0c;内核是Cortex-M0。这个单片机的特色&#xff0c;就是价格便宜&#xff0c;FLASH和SRAM远远超过8位单片机&#xff0c;市场竞争力很强大。 一、硬件资源&#xff1a; 1)、FLASH为64K字节&#xff1b; 2)、SRAM为8K字节&…

解决gitee仓库中 .git 文件夹过大的问题

最近&#xff0c;许多项目都迁移到gitee。使用的也越来越频繁&#xff0c;但是今天突然收到一个仓库爆满的提示。让我一脸懵逼。本文将详细为你解答&#xff0c;这种情况如何处理。 1、起因 我收到的报错如下&#xff1a; remote: Powered by GITEE.COM [GNK-6.4] remote: T…

车载监管模块项目需求分析报告

目录 1 文档说明.......................................................................................... 4 2 参考文件.......................................................................................... 4 3 概述.......................................…

YOLOv7框架解析

YOLOv7概念 YOLOv7是基于YOLO系列的目标检测算法&#xff0c;由Ultra-Light-Fast-Detection&#xff08;ULFD&#xff09;和Scaled-YOLOv4两种算法结合而来。它是一种高效、准确的目标检测算法&#xff0c;具有以下特点&#xff1a; 1. 高效&#xff1a;YOLOv7在保持准确率的…

Qt应用开发(基础篇)——颜色选择器 QColorDialog

一、前言 QColorDialog类继承于QDialog&#xff0c;是一个设计用来选择颜色的对话框部件。 对话框窗口 QDialog QColorDialog颜色选择器一般用来让用户选择颜色&#xff0c;比如画图工具中选择画笔的颜色、刷子的颜色等。你可以使用静态函数QColorDialog::getColor()直接显示对…

项目 - 后端技术栈转型方案

前言 某开发项目的后端技术栈比较老了&#xff0c;现在想换到新的技术栈上。使用更好的模式、设计思想、更合理的架构等&#xff0c;为未来的需求迭代做铺垫。怎么办呢&#xff1f;假设系统目前在线上运行着的&#xff0c;直接整体换的话耗时太久&#xff0c;且中间还有新的需…

linux安装docker全过程

3. 第二步&#xff1a;设置docker的存储库。就两条命令&#xff0c;我们直接执行就好。 ​ sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo ​​ 4. 安装docker engine和docker-compose。 执行命…

Kotlin inline、noinline、crossinline 深入解析

主要内容&#xff1a; inline 高价函数的原理分析Non-local returns noinlinecrossinline inline 如果有C语言基础的&#xff0c;inline 修饰一个函数表示该函数是一个内联函数。编译时&#xff0c;编译器会将内联函数的函数体拷贝到调用的地方。我们先看下在一个普通的 kot…

QChart绘制柱状图并修改单个柱状条的颜色

文章目录 前言Qt Chart修改单个柱状图的颜色柱状堆积图利用柱状堆积图实现修改单个柱状条的颜色总结 前言 Qt Charts是Qt官方提供的一个模块&#xff0c;用于在Qt应用程序中创建各种图表和数据可视化。它提供了一组用于绘制和展示统计数据、趋势分析、实时数据等的类和函数。 …