随机森林算法

介绍

随机森林是一种基于集成学习有监督机器学习算法。随机森林是包含多个决策树的分类器,一般输出的类别是由决策树的众数决定。随机森林也可以用于常见的回归拟合。随机森林主要是运用了两种思想。具体如下所示。

  • Breimans的Bootstrap aggregating
  • Ho的random subspace method

储备知识

集成学习

集成学习主要是通过个体学习器(如决策树)通过一定组合策略将其组合起来,形成一个准确率较高,较为优秀的学习器。
学习器有同质和异质之分,如随机森林里面的学习器都是决策树,即为是同质,反之即为异质。
集成学习的学习器一般为弱学习器,但弱学习器也需要下列特质。

  • 需要一定的准确性
  • 需要多样性,弱学习器之间需要存在一定差异性

在这里插入图片描述

决策树学习

决策树是机器学习常见的方法,而且决策树本质为树学习,树学习能够有以下优点

  • 在特征值缩放和其他转换下,决策树的结果保持不变
  • 无关特征对于结果影响较少,因此决策树对于无关结果是稳健的

树学习的缺点如下。

  • 生长很深的树容易学习到高度不规则的模式,即为过学习,在训练集上具有一定的低偏差高变异数的特点。

因此,随机森林是平均多个深决策树的结果,目的是为了降低变异数。此外,随机森林的决策树是在一个数据集的不同部分进行训练,各部分具有一定的独立性。
随机森林的缺点为偏差的小幅增加和可解释性的丧失。优点为用于大数据集上能够提高准确率和性能。

Bagging 算法

Bagging算法又称为引导聚集算法(装袋算法),属于集成学习算法。主要的目的为能够提高回归,风雷的准确性以及稳定性,同时能够降低结果的变异数,降低过拟合发生的概率。
随机森林训练算法将bagging算法应用于树学习中,给定训练集合 X = x 1 , ⋯ x n X=x_1, \cdots x_n X=x1,xn和label集合 Y = y 1 ⋯ y n Y=y_1 \cdots y_n Y=y1yn,Bagging 算法会从训练集合中有放回采样B次,在这些样本上不断训练树模型。
具体流程如下所示。

For b = 1, …, B:(循环B次,即为重复B次操作)
Sample, with replacement, n training examples from X, Y; call these Xb, Yb.(有放回采样,样本数量为B)
Train a classification or regression tree fb on Xb, Yb(训练树回归/分类模型)

迭代B次之后即为训练结束,对未知样本x的预测可以通过对x上所有单个回归书的预测求取平均来实现。
公式如下所示。 f ^ \hat f f^为预测结果,可以为分类或者拟合结果。 f b ( x ′ ) f_b(x^{\prime}) fb(x)为经过单个决策树之后的结果。

f ^ = 1 B ∑ b = 1 B f b ( x ′ ) \hat{f}=\frac1B\sum_{b=1}^Bf_b(x^{\prime}) f^=B1b=1Bfb(x)

此外, x ′ x^{\prime} x上所以单个回归树的预测的标准差可以作为预测的不确定性的估计数值。具体公式如下所示。
σ = ∑ b = 1 B ( f b ( x ′ ) − f ^ ) 2 B − 1 . \sigma=\sqrt{\frac{\sum_{b=1}^B(f_b(x^{\prime})-\hat{f})^2}{B-1}}. σ=B1b=1B(fb(x)f^)2 .

bagging方法在不增加偏置的情况下能够降低方差。
单个树模型的预测会对数据集的噪声十分敏感,因此对于多个树模型,只要树模型没有明显的相关性,在同一个数据集上简单的训练多个树模型会导致树模型具有强相关性。因此bagging方法的Bootstrap抽样方法能够通过同样的数据集产生不同的训练集以供其他树模型训练。从而降低模型的关联性。

代码

样本数据主要根据下列连接获取。
需要自主上传下载google云盘去获取

import sklearn.datasets as datasets
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.decomposition import PCA
from six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
import os# 导入数据,路径中要么用\\或/或者在路径前加r,目前是读取当前路径,所以数据文件要放置在同一文件夹/目录中
dataset = pd.read_csv(r'./petrol_consumption.csv')# 准备训练数据
# 自变量, 因变量,本代码主要做的是拟合,而且这里主要获取数据的dataframe转化为ndarry
X = dataset.iloc[:, 0:4].values
y = dataset.iloc[:, 4].values# 将数据分为训练集和测试集,切分数据集合,而且比例为8:2,随机种子为0,保证结果可复现性
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=0)
regr = RandomForestRegressor() # 设置随机森林拟合,下列为参数
# regr = RandomForestRegressor(random_state=100,
#                              bootstrap=True,
#                              max_depth=2,
#                              max_features=2,
#                              min_samples_leaf=3,
#                              min_samples_split=5,
#                              n_estimators=3)
# 这里为封装管道,最终直接可以调用,所以这里运用的是最大最小归一化,而且运用的是PCA降低维度,最终回归用的是regr,所以走完了所有的操作
pipe = Pipeline([('scaler', StandardScaler()), ('reduce_dim', PCA()),('regressor', regr)])
pipe.fit(X_train, y_train)
ypipe = pipe.predict(X_test)# 执行一次,需要自己去配置graphviz,这个网上有很多教程,主要是用于绘制图像
# os.environ['PATH'] = os.environ['PATH']+';'+r"D:\CLibrary\Graphviz2.44.1\bin\graphviz"
dot_data = StringIO()
# export_graphviz()数是一个用于将决策树可视化的函数,通常与机器学习库scikit-learn一起使用
export_graphviz(pipe.named_steps['regressor'].estimators_[0],# pipe.named_steps['regressor'].estimators_[0]返回的是回归器的第一个实例,即为随机初始化一个决策树绘制out_file=dot_data)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_png('tree.png')Image(graph.create_png())# Get numerical feature importances,获取特征(输入变量的重要程度,即为判断哪个因素最为重要)
importances = list(regr.feature_importances_)
# List of tuples with variable and importance
print(importances)# 保存模型的特征名称
feature_list = list(dataset.columns)[0:4]
# round()函数将特征重要程度四舍五入
feature_importances = [(feature, round(importance, 2)) for feature, importance in zip(feature_list, importances)]
# 将特征重要程度进行排序
feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = True)import matplotlib.pyplot as plt
# Set the style
# plt.style.use('fivethirtyeight')
# list of x locations for plotting
x_values = list(range(len(importances)))
print(x_values)
# Make a bar chart
plt.bar(x_values, importances, orientation = 'vertical')
# Tick labels for x axis
plt.xticks(x_values, feature_list,rotation=6)
# Axis labels and title
plt.ylabel('Importance'); plt.xlabel('Variable'); plt.title('Variable Importances');
plt.show()
print('successful')

回归器的参数如下所示。sklearn的RandomForestRegressor参数如下所示。

'''
sklearn.ensemble.RandomForestRegressor(
n_estimators=100, *, 				# 树的棵树,默认是100
criterion='mse', 					# 默认“ mse”,衡量质量的功能,可选择“mae”。
max_depth=None, 					# 树的最大深度。
min_samples_split=2, 				# 拆分内部节点所需的最少样本数:
min_samples_leaf=1, 				# 在叶节点处需要的最小样本数。
min_weight_fraction_leaf=0.0, 		# 在所有叶节点处的权重总和中的最小加权分数。
max_features='auto', 				# 寻找最佳分割时要考虑的特征数量。
max_leaf_nodes=None, 				# 以最佳优先方式生长具有max_leaf_nodes的树。
min_impurity_decrease=0.0, 			# 如果节点分裂会导致杂质的减少大于或等于该值,则该节点将被分裂。
min_impurity_split=None, 			# 提前停止树木生长的阈值。
bootstrap=True, 					# 建立树木时是否使用bootstrap抽样。 如果为False,则将整个数据集用于构建每棵决策树。
oob_score=False, 					# 是否使用out-of-bag样本估算未过滤的数据的R2。
n_jobs=None, 						# 并行运行的Job数目。
random_state=None, 					# 控制构建树时样本的随机抽样
verbose=0, 							# 在拟合和预测时控制详细程度。
warm_start=False, 					# 设置为True时,重复使用上一个解决方案,否则,只需拟合一个全新的森林。
ccp_alpha=0.0,
max_samples=None)					# 如果bootstrap为True,则从X抽取以训练每个决策树。
'''

参考

维基百科随机森林介绍
随机森林算法梳理(Random Forest)
一文看懂随机森林
用Python实现随机森林回归

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117771.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

操作系统清华同步笔记:定义概述+计算机内存和硬盘布局+启动流程顺序+中断、异常和系统调用

定义概述 从用户角度来看,操作系统是一个控制软件,用以管理应用程序,为应用程序提供服务,杀死应用程序等。从内部文件角度来看,操作系统是一个资源管理器,用以管理外设,分配资源。层次结构&…

MySQL内容及原理记录

原理篇 架构、索引、事务、锁、日志、性能调优 高可用 读写分离、分库分表、分布式ID、高可用、分布式数据库、分布式事务、分布式锁 架构 1 执行一条 SQL 查询语句,期间发生了什么? (1)连接器:客户端通过连接器…

uniapp 支持图片放大

<view class"list" v-for"(item, index) in urls" :key"index"><image :src"item" click"viewImg(item, index)" disabled></image></view> js // 预览大图 viewImg(data, index) {uni.previewImag…

【Three.js + Vue 构建三维地球-Part One】

Three.js Vue 构建三维地球-Part One Vue 初始化部分Vue-cli 安装初始化 Vue 项目调整目录结构 Three.js 简介Three.js 安装与开始使用 实习的第一个任务是完成一个三维地球的首屏搭建&#xff0c;看了很多的案例&#xff0c;也尝试了用 Echarts 3D地球的模型进行构建&#xf…

苍穹外卖01-项目概述、环境搭建

项目概述、环境搭建 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示&#xff1a; 管理端-外卖商家使用用户端-点餐用户使用当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为一名软…

【单片机】UART、I2C、SPI、TTL、RS232、RS422、RS485、CAN、USB、SD卡、1-WIRE、Ethernet等常见通信方式

在单片机开发中&#xff0c;UART、I2C、RS485等普遍在用&#xff0c;这里做一个简单的介绍 UART通用异步收发器 UART口指的是一种物理接口形式(硬件)。 UART是异步&#xff08;指不使用时钟同步&#xff0c;依靠帧长进行判断&#xff09;&#xff0c;全双工&#xff08;收发…

Linux:编译遇到 Please port gnulib freadahead.c to your platform ,怎么破

问题背景 编译m4时遇到以下错误&#xff0c;该怎么解决呢&#xff1f; 解决方法 进入m4的build目录&#xff1a;build/host-m4-1.4.17 输入命令&#xff1a; sed -i s/IO_ftrylockfile/IO_EOF_SEEN/ lib/*.c echo "#define _IO_IN_BACKUP 0x100" >> lib/std…

长城网络靶场,第一题笔记

黑客使用了哪款扫描工具对论坛进行了扫描&#xff1f;&#xff08;小写简称&#xff09; 第一关&#xff0c;第三小题的答案是awvs 思路是先统计查询 然后过滤ip检查流量 过滤语句&#xff1a;tcp and ip.addr ip 114.240179.133没有 第二个101.36.79.67 之后找到了一个…

Lua学习(一)

lua基础学习 LUA 语言1. 什么是lua&#xff1f;1.1 准备工作 2. 基本语法2.1 注释2.2 标识符2.3 关键字2.4 全局变量 3. 数据类型4. 变量4.1 赋值语句 5. 循环5.1 while循环5.2 for循环5.3泛型for循环5.4 repeat until 循环5.5 break 语句 6. 流程控制6.1 if语句6.2 if else 语…

【React】React学习:从初级到高级(三)

3 状态管理 随着应用不断变大&#xff0c;应该更有意识的去关注应用状态如何组织&#xff0c;以及数据如何在组件之间流动。冗余或重复的状态往往是缺陷的根源。 3.1 用State响应输入 3.1.1 声明式地考虑UI 总体步骤如下&#xff1a; 定位组件中不同的视图状态 确定是什么…

程序员工作技巧

提高工作技巧的秘方 案例 让我们猜测一下 绵羊想表达的什么&#xff1f; 并不够准确 崩了&#xff0c;不能用了整个业务瘫痪了研发没有责任感 语义规则/模棱俩可 相对语言 量化数据表达&#xff1a;疼苦指数&#xff0c;拥堵指数&#xff0c;准确。 尽量减少标签化评价 标签…

STM32的HAL库的定时器使用

用HAL库老是忘记了定时器中断怎么配置&#xff0c;该调用哪个回调函数。今天记录一下&#xff0c;下次再忘了就来翻一下。 系统的时钟配置&#xff0c;定时器的时钟是84MHz 这里定时器时钟是84M&#xff0c;分频是8400后&#xff0c;时基就是1/10000s&#xff0c;即0.1ms。Per…

嵌入式学习笔记(10)mkv210_image.c代码详解

第1步&#xff1a;检验用户传参是不是3个。 第2步&#xff1a;分配16KB buffer并且填充为0. 第3步&#xff1a;打开源bin&#xff08;led.bin&#xff09;&#xff0c;判断bin长度是否不大于16KB-16Bytes 第4步&#xff1a;以16个字符串填充0~15这16个Bytes 第5步&#xff…

Windows Network File System Remote Code Execution Vulnerability

文章目录 NFS(Network File System)漏洞描述攻击者如何利用此漏洞&#xff1f;该漏洞的危险程度机密性-high真实性-high可用性-high 如何降低漏洞风险推荐阅读 NFS(Network File System)漏洞描述 Name Microsoft Windows Network File System Remote Code Execution Vulnerabi…

verilator——牛刀小试

verilator——牛刀小试 安装verilator可见&#xff1a;https://blog.csdn.net/qq_40676869/article/details/132648522?spm1001.2014.3001.5501 正文开始 编写一个异或的电路模块如下&#xff1a; top.v module top(input a,input b,output f );assign f a ^ b; endmodul…

2.4 关系数据库

思维导图&#xff1a; 前言&#xff1a; 这段话描述了“关系数据库”及其背后的理论基础。首先&#xff0c;我们来拆分这段话并逐步解释每部分。 关系数据库是采用关系模型作为数据组织方式的数据库。 这句话的关键是“关系模型”。关系模型是一种表示和操作数据库的理论模型…

【GUI开发】用python爬YouTube博主信息,并开发成exe软件

文章目录 一、背景介绍二、代码讲解2.1 爬虫2.2 tkinter界面2.3 存日志 三、软件演示视频四、说明 一、背景介绍 你好&#xff0c;我是马哥python说&#xff0c;一名10年程序猿。 最近我用python开发了一个GUI桌面软件&#xff0c;目的是爬取相关YouTube博主的各种信息&#…

燃气管网监测系统,提升城市燃气安全防控能力

燃气是我们日常生活中不可或缺的能源&#xff0c;但其具有易燃易爆特性&#xff0c;燃气安全使用、泄漏监测尤为重要。当前全国燃气安全事故仍呈现多发频发态势&#xff0c;从公共安全的视角来看&#xff0c;燃气已成为城市安全的重大隐忧&#xff01;因此&#xff0c;建立一个…

结构化日志记录增强网络安全性

日志是一种宝贵的资产&#xff0c;在监视和分析应用程序或组织的 IT 基础结构的整体安全状况和性能方面发挥着至关重要的作用。它们提供系统事件、用户活动、网络流量和应用程序行为的详细记录&#xff0c;从而深入了解潜在威胁或未经授权的访问尝试。虽然组织历来依赖于传统的…

Ubuntu22.04安装Mongodb7.0

Ubuntu安装Mongodb 1.平台支持2.安装MongoDB社区版2.1导入包管理系统使用的公钥2.2为MongoDB创建列表文件2.3重新加载本地包数据库2.4安装MongoDB包1.安装最新版MongoDB2.安装指定版MongoDB 3.运行MongoDB社区版1.目录2.配置文件3.初始化系统4.启动MongoDB5.验证MongoDB是否成功…