ELK原理和介绍

为什么用到ELK:

一般我们需要进行日志分析场景:直接在日志文件中 grep、awk 就可以获得自己想要的信息。但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档、文本搜索太慢怎么办、如何多维度查询。需要集中化的日志管理,所有服务器上的日志收集汇总。常见解决思路是建立集中式日志收集系统,将所有节点上的日志统一收集,管理,访问。

一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。

一个完整的集中式日志系统,需要包含以下几个主要特点:

  • 收集-能够采集多种来源的日志数据
  • 传输-能够稳定的把日志数据传输到中央系统
  • 存储-如何存储日志数据
  • 分析-可以支持 UI 分析
  • 警告-能够提供错误报告,监控机制

ELK提供了一整套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用。目前主流的一种日志系统。

ELK简介:

ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少,适合于在各个服务器上搜集日志后传输给Logstash,官方也推荐此工具。

Elasticsearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

Logstash 主要是用来日志的搜集、分析、过滤日志的工具,支持大量的数据获取方式。一般工作方式为c/s架构,client端安装在需要收集日志的主机上,server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch上去。

Kibana 也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。

Filebeat隶属于Beats。目前Beats包含四种工具:

    1. Packetbeat(搜集网络流量数据)
    2. Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)
    3. Filebeat(搜集文件数据)
    4. Winlogbeat(搜集 Windows 事件日志数据)

官方文档:

Filebeat:

Filebeat:轻量型日志分析与 Elasticsearch | Elastic
Filebeat Reference [5.6] | Elastic

Logstash:
Logstash:收集、解析和转换日志 | Elastic
Logstash Reference [5.6] | Elastic

Kibana:

Kibana:数据的探索、可视化和分析 | Elastic

Kibana User Guide [5.5] | Elastic

Elasticsearch:
Elasticsearch:官方分布式搜索和分析引擎 | Elastic
Elasticsearch Reference [5.6] | Elastic

elasticsearch中文社区:
Elastic 中文社区

ELK架构图:

架构图一:

这是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。

此架构由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。Elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户亦可以更直观的通过配置Kibana Web方便的对日志查询,并根据数据生成报表。

架构图二:

此种架构引入了消息队列机制,位于各个节点上的Logstash Agent先将数据/日志传递给Kafka(或者Redis),并将队列中消息或数据间接传递给Logstash,Logstash过滤、分析后将数据传递给Elasticsearch存储。最后由Kibana将日志和数据呈现给用户。因为引入了Kafka(或者Redis),所以即使远端Logstash server因故障停止运行,数据将会先被存储下来,从而避免数据丢失。

架构图三:

此种架构将收集端logstash替换为beats,更灵活,消耗资源更少,扩展性更强。同时可配置Logstash 和Elasticsearch 集群用于支持大集群系统的运维日志数据监控和查询。

Filebeat工作原理:

Filebeat由两个主要组件组成:prospectors 和 harvesters。这两个组件协同工作将文件变动发送到指定的输出中。

Harvester(收割机):负责读取单个文件内容。每个文件会启动一个Harvester,每个Harvester会逐行读取各个文件,并将文件内容发送到制定输出中。Harvester负责打开和关闭文件,意味在Harvester运行的时候,文件描述符处于打开状态,如果文件在收集中被重命名或者被删除,Filebeat会继续读取此文件。所以在Harvester关闭之前,磁盘不会被释放。默认情况filebeat会保持文件打开的状态,直到达到close_inactive(如果此选项开启,filebeat会在指定时间内将不再更新的文件句柄关闭,时间从harvester读取最后一行的时间开始计时。若文件句柄被关闭后,文件发生变化,则会启动一个新的harvester。关闭文件句柄的时间不取决于文件的修改时间,若此参数配置不当,则可能发生日志不实时的情况,由scan_frequency参数决定,默认10s。Harvester使用内部时间戳来记录文件最后被收集的时间。例如:设置5m,则在Harvester读取文件的最后一行之后,开始倒计时5分钟,若5分钟内文件无变化,则关闭文件句柄。默认5m)。

Prospector(勘测者):负责管理Harvester并找到所有读取源。

1

2

3

4

filebeat.prospectors:

- input_type: log

  paths:

    - /apps/logs/*/info.log

Prospector会找到/apps/logs/*目录下的所有info.log文件,并为每个文件启动一个Harvester。Prospector会检查每个文件,看Harvester是否已经启动,是否需要启动,或者文件是否可以忽略。若Harvester关闭,只有在文件大小发生变化的时候Prospector才会执行检查。只能检测本地的文件。

Filebeat如何记录文件状态:

将文件状态记录在文件中(默认在/var/lib/filebeat/registry)。此状态可以记住Harvester收集文件的偏移量。若连接不上输出设备,如ES等,filebeat会记录发送前的最后一行,并再可以连接的时候继续发送。Filebeat在运行的时候,Prospector状态会被记录在内存中。Filebeat重启的时候,利用registry记录的状态来进行重建,用来还原到重启之前的状态。每个Prospector会为每个找到的文件记录一个状态,对于每个文件,Filebeat存储唯一标识符以检测文件是否先前被收集。

Filebeat如何保证事件至少被输出一次:

Filebeat之所以能保证事件至少被传递到配置的输出一次,没有数据丢失,是因为filebeat将每个事件的传递状态保存在文件中。在未得到输出方确认时,filebeat会尝试一直发送,直到得到回应。若filebeat在传输过程中被关闭,则不会再关闭之前确认所有时事件。任何在filebeat关闭之前为确认的时间,都会在filebeat重启之后重新发送。这可确保至少发送一次,但有可能会重复。可通过设置shutdown_timeout 参数来设置关闭之前的等待事件回应的时间(默认禁用)。

Logstash工作原理:

Logstash事件处理有三个阶段:inputs → filters → outputs。是一个接收,处理,转发日志的工具。支持系统日志,webserver日志,错误日志,应用日志,总之包括所有可以抛出来的日志类型。

Input:输入数据到logstash。

一些常用的输入为:

file:从文件系统的文件中读取,类似于tail -f命令

syslog:在514端口上监听系统日志消息,并根据RFC3164标准进行解析

redis:从redis service中读取

beats:从filebeat中读取

Filters:数据中间处理,对数据进行操作。

一些常用的过滤器为:

grok:解析任意文本数据,Grok 是 Logstash 最重要的插件。它的主要作用就是将文本格式的字符串,转换成为具体的结构化的数据,配合正则表达式使用。内置120多个解析语法。

官方提供的grok表达式:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns
grok在线调试:https://grokdebug.herokuapp.com/

mutate:对字段进行转换。例如对字段进行删除、替换、修改、重命名等。

drop:丢弃一部分events不进行处理。

clone:拷贝 event,这个过程中也可以添加或移除字段。

geoip:添加地理信息(为前台kibana图形化展示使用)

Outputs:outputs是logstash处理管道的最末端组件。一个event可以在处理过程中经过多重输出,但是一旦所有的outputs都执行结束,这个event也就完成生命周期。

一些常见的outputs为:

elasticsearch:可以高效的保存数据,并且能够方便和简单的进行查询。

file:将event数据保存到文件中。

graphite:将event数据发送到图形化组件中,一个很流行的开源存储图形化展示的组件。

Codecs:codecs 是基于数据流的过滤器,它可以作为input,output的一部分配置。Codecs可以帮助你轻松的分割发送过来已经被序列化的数据。

一些常见的codecs:

json:使用json格式对数据进行编码/解码。

multiline:将汇多个事件中数据汇总为一个单一的行。比如:java异常信息和堆栈信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118509.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ansible学习笔记11

Command和Shell模块&#xff1a; 两个模块都是用于执行Linux命令的&#xff0c;这个对于命令熟悉的工程师来说&#xff0c;用起来非常high。 Shell模块跟Command模块差不多&#xff08;Command模块不能执行一类$HOME、> 、<、| 等符号&#xff0c;但是Shell是可以的。&…

大学物理 之 安培环路定理

文章目录 前言什么是安培环路定理安培环路定理有什么作用 深入了解深入学习 前言 什么是安培环路定理 安培环路定理的物理意义在于描述了电流和磁场之间的相互作用&#xff0c;以及如何在一个封闭的回路中分析这种相互作用。 简单的来说 , 用环路定理来解决在磁场中B对任意封…

java基础-----第九篇

系列文章目录 文章目录 系列文章目录前言一、GC如何判断对象可以被回收前言 一、GC如何判断对象可以被回收 引用计数法:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计 数为0时可以回收, 可达性分析法:从 GC Roots 开始向下搜索,搜索所走过的…

TCP Header都有啥?

分析&回答 源端口号&#xff08;Source Port&#xff09; &#xff1a;16位&#xff0c;标识主机上发起传送的应用程序&#xff1b; 目的端口&#xff08;Destonation Port&#xff09; &#xff1a;16位&#xff0c;标识主机上传送要到达的应用程序。 源端&#xff0c;目…

第 3 章 栈和队列 (循环队列)

1. 背景说明 和顺序栈相类似&#xff0c;在队列的顺序存储结构中&#xff0c;除了用一组地址连续的存储单元依次存放从队列头到队列尾的元素之外&#xff0c; 尚需附设两个指针 front 和 rear 分别指示队列头元素及队列尾元素的位置。约定&#xff1a;初始化建空队列时&#x…

全网都在用的nnUNet V2版本改进了啥,怎么安装?(一)

nnUNet&#xff0c;这个医学领域的分割巨无霸!在论文和比赛中随处可见他的身影。大家对于nnUNet v1版本的教程都赞不绝口&#xff0c;因为它简单易懂、详细全面&#xff0c;让很多朋友都轻松掌握了使用方法。 最近&#xff0c;我也抽出时间仔细研究了nnUNet v2&#xff0c;并全…

英国一大学宣布:严禁使用AI生成个人陈述

8月29日&#xff0c;伦敦都会大学&#xff08;London Met Uni&#xff09;在发给合作伙伴的邮件中表示&#xff1a;“我们知道人工智能技术已经被用来生成个人陈述&#xff08;personal statements&#xff0c;即文书&#xff09;。请注意&#xff0c;本大学不接受任何由人工智…

说说大表关联小表

分析&回答 Hive 大表和小表的关联 优先选择将小表放在内存中。小表不足以放到内存中&#xff0c;可以通过bucket-map-join(不清楚的话看底部文章)来实现&#xff0c;效果很明显。 两个表join的时候&#xff0c;其方法是两个join表在join key上都做hash bucket&#xff0c…

系统架构技能之设计模式-抽象工厂模式

一、上篇回顾 上篇我们主要讲述了简单工厂模式和工厂模式。并且分析了每种模式的应用场景和一些优缺点&#xff0c;我们现在来回顾一下&#xff1a; 简单工厂模式&#xff1a;一个工厂负责所有类型对象的创建&#xff0c;不支持无缝的新增新的类型对象的创建。 工厂模式&…

githubPage部署Vue项目

github中新建项目 my-web &#xff08;编写vue项目代码&#xff09; myWebOnline(存放Vue打包后的dist包里面的文件) 发布流程 &#xff08;假设my-web项目已经编写完成&#xff09;Vue-cli my-web vue.config.js文件中 const { defineConfig } require(vue/cli-service)…

求解整数规划问题的割平面法和分支定界法

文章目录 整数规划割平面法分支定界法代码实现 整数规划 整数规划问题是优化变量必须取整数值的线性或非线性规划问题&#xff0c;不过&#xff0c;在大多数情况下&#xff0c;整数规划问题指的是整数线性规划问题。 其数学模型为 m i n f ( x ) c T x s.t A x b x ≥ 0 x…

JVM类的加载过程

加载过程 JVM的类的加载过程分为五个阶段&#xff1a;加载、验证、准备、解析、初始化。 加载   加载阶段就是将编译好的的class文件通过字节流的方式从硬盘或者通过网络加载到JVM虚拟机当中来。&#xff08;我们平时在Idea中书写的代码就是放在磁盘中的&#xff0c;也可以通…

Mysql主从服务安装配置

1.下载地址 MySQL :: Download MySQL Community Server (Archived Versions)https://downloads.mysql.com/archives/community/ 2.安装配置 1.下载解压后&#xff0c;拷贝一份作为slave的安装目录 3.配置my.ini 由于下载mysql8版本&#xff0c;解压后&#xff0c;没有相关的my…

Spark有两种常见的提交方式:client 模式和 cluster 模式对机器 CPU 的影响

Spark有两种常见的提交方式&#xff1a;client 模式和 cluster 模式。这两种方式对机器 CPU 的影响略有不同 &#xff0c;请参考以下说明 Client 模式&#xff1a; 在 Client 模式下&#xff0c;Spark Driver 运行在提交任务的客户端节点上&#xff08;即运行 spark-submit 命…

企业数据加密软件——「天锐绿盾」

「天锐绿盾」是一款企业数据加密软件&#xff0c;主要用于防止企业计算机信息被破坏、丢失和泄密。该软件采用文件过滤驱动实现透明加解密&#xff0c;对用户完全透明&#xff0c;不影响用户操作习惯。 PC访问地址&#xff1a; isite.baidu.com/site/wjz012xr/2eae091d-1b97-4…

Laravel 模型1对1关联 1对多关联 多对多关联 ⑩①

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; THINK PHP &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f44…

DNS原理

文章目录 一、域名产生背景域名的树形层次化结构 二、定义三、DNS查询模式递归查询迭代查询 四、主机域名解析工作流程五、H3C配置DNS代理 首先可以看下思维导图&#xff0c;以便更好的理解接下来的内容。 一、域名 产生背景 在互联网中&#xff0c;通过IP地址访问目标主机…

Python:多变量赋值

相关文章 Python专栏https://blog.csdn.net/weixin_45791458/category_12403403.html?spm1001.2014.3001.5482 Python中的赋值语句可以同时对多个变量进行对象绑定&#xff08;赋值&#xff09;&#xff0c;既可以是多变量链式赋值&#xff0c;也可以是多变量平行赋值&#x…

【LeetCode75】第四十二题 删除二叉搜索数中的节点

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一棵二叉搜索树&#xff0c;给我们一个目标值&#xff0c;让我们删除节点值等于目标值的节点&#xff0c;并且删除之后需要保持…

React 18 在组件间共享状态

参考文章 在组件间共享状态 有时候&#xff0c;希望两个组件的状态始终同步更改。要实现这一点&#xff0c;可以将相关 state 从这两个组件上移除&#xff0c;并把 state 放到它们的公共父级&#xff0c;再通过 props 将 state 传递给这两个组件。这被称为“状态提升”&#…