24.排序,插入排序,交换排序

目录

一. 插入排序

(1)直接插入排序

(2)折半插入排序

(3)希尔排序

二. 交换排序

(1)冒泡排序

(2)快速排序


排序:将一组杂乱无章的数据按一定规律顺次排列起来。即,将无序序列排成一个有序序列(由小到大或由大到小)的运算。如果参加排序的数据结点包含多个数据域,那么排序往往是针对其中某个域而言。

排序方法:

  • 按数据存储介质:内部排序和外部排序
  • 按比较器个数:串行排序和并行排序
  • 按主要操作:比较排序基数排序(后面会讲)
  • 按辅助空间:原地排序和非原地排序
  • 按稳定性:稳定排序和非稳定排序
  • 按自然性:自然排序和非自然排序

本章学习内容:

  • 插入排序:直接插入排序、折半插入排序、希尔排序
  • 交换排序:冒泡排序、快速排序
  • 选择排序:简单选择排序、堆排序
  • 归并排序:2-路归并排序
  • 基数排序

衡量排序算法的指标有时间复杂度,空间复杂度和稳定性等。对于稳定性做一点说明。稳定排序指的是能够使任何数值相等的元素,排序以后相对次序不变。例如,下面的示例1是稳定排序,示例2就不是稳定排序。

排序的稳定牲只对结构类型数据排序有意义。例如:n个学生信息(学号、姓名、语文、数学、英语、总分),首先按数学成绩从高到低排序,然后按照总分从高到低排序。若是稳定排序,总分相同的情况下,数学成绩高的仍然排在前面。

存储结构:本章基于的存储结构均以顺序表存储。

#define MAXSIZE 20  //设记录不超过20个
typedef int KeyType;  //设关键字为整型量(int型)typedef struct{  //定义每个记录(数据元素)的结构KeyType key;  //关键字InfoType otherinfo;  //其它数据项
}RedType;  //Record Typetypedef struct{  //定义顺序表的结构RedType r[MAXSIZE+1];  //存储顺序表的向量//r[0]一般作哨兵或缓冲区int length;  //顺序表的长度
}SqList;

一. 插入排序

基本思想:每步将一个待排序的对象,按其关键码大小,插入到前面已经排好序的一组对象的适当位置上,直到对象全部插入为止。即边插入边排序。

根据确定插入位置的方法不同,我们可以有以下三种插入排序的方法:

(1)直接插入排序

顺序法定位插入位置:一个一个比较。

  • 首先,复制待插入的元素,复制插入元素。x=a[i];
  • 然后,记录后移,查找插入位置;for(j=i-1; j>=0&&x<a[j];j--),a[j+1]=a[j];
  • 最后,插入到正确位置,a[j+1]=x;

对于复制待插入的元素,我们可以使用哨兵。把待插入的元素复制到0号位,这样省去了越界的判断:

此外,如果待插入元素比有序表最后一位还大,那就不用进行任何操作了,这个位置就是待插入元素的位置。

void InsertSort(SqList &L){int i, j;for(i=2; i<=L.length; ++i){  //第1个元素不用排序,从插入第2个元素开始if (L.r[i].key < L.r[i-1].key){  //若"<",需将L.r[i]插入有序子表L.r[0]=L.r[i];  //复制为哨兵for(j=i-1; L.r[0].key<L.r[j].key; --j){L.r[j+1]=L.r[j];  //记录后移}L.r[j+1]=L.r[0];  //插入到正确位置}}
}

下面我们来分析时间效率。实现排序的基本操作有两个:(1)“比较”序列中两个关键字的大小;(2)“移动”记录。最好的情况是,关键字在记录序列中顺序有序。这时比较的次数是\sum_{i=2}^{n}1=n-1,不需要移动。最坏的情况是,关键字在记录序列中逆序有序。这时比较的次数是\sum_{i=2}^{n}i=\frac{(n+2)(n-1)}{2},移动的次数是\sum_{i=2}^{n}(i+1)=\frac{(n+4)(n-1)}{2},从而我们可以得到以下结论:

  • 原始数据越接近有序,排序速度越快;
  • 最坏情况下(输入数据是逆有序的)Tw(n)=O(n^2);
  • 平均情况下,耗时差不多是最坏情况的一半Te(n)=O(n^2);
  • 空间复杂度是O(1);
  • 要提高查找速度,可以从减少元素的比较次数和减少元素的移动次数入手;

(2)折半插入排序

查找插入位置采用折半查找法。

void BlnsertSort (SqList &L){for (i = 2; i<= L.length ; ++i){  //依次插入第2~第n个元素L.r[0] = L.r[i];  //当前插入元素存到“哨兵”位置low = 1 ; high = i-1;  //采用二分查找法查找插入位置while (low <= high){mid = (low + high)/2;if (L.r[0].key < L.r[mid].key) high = mid-1;else low = mid + 1;}  //循环结束,high+1则为插入位置for (j=i-1; j>=high+1; --j) L.r[j+1] = L.r[j];  //移动元素L.r[high+1] = L.r[0];  //插入到正确位置
}// BInsertSort

最后我们分析算法的时间效率。折半查找比顺序查找快,所以折半插入排序就平均性能来说比直按插入排序要快。它所需要的关键码比较次数与待排序对象序列的初始排列无关,仅依赖于对象个数。在插入第i个对象时,需要经过\left \lfloor log_2i \right \rfloor+1次关键码比较,才能确定它应插入的位置。

当n较大时,总关键码比较次数比直接插入排序的最坏情况要好得多,但比其最好情况要差。在对象的初始排列已经按关键码排好序或接近有序时,直接插入排序比折半插入排序执行的关键码比较次数要少。对移动次数,折半插入排序的对象移动次数与直接插入排序相同,依赖于对象的初始排列。所以折半插入排序减少了比较次数,但没有减少移动次数。平均性能优于直接插入排序。其时间复杂度为O(n^2),空间复杂度是O(1),是一种稳定的排序方法。

(3)希尔排序

直接排序什么时候效率较高?一是序列基本有序,二是序列长度较小。基于此我们提出希尔排序的基本思路:先将整个待排记录序列分割成若干子序列,分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。希尔排序的算法特点是:

  • 一次移动,移动位置较大,跳跃式地接近排序后的最终位置
  • 最后一次只需要少量移动
  • 增量序列必须是递减的,最后一个必须是1
  • 增量序列应该是互质的

首先:定义增量序列D_k:D_M>D_{M-1}>...>D_1=1,刚才的例子中D=[5,3,1]
然后:对每个D_k进行“D_k-间隔”插入排序(k=M,M-1,...1)。

//主程序
void ShellSort(Sqlist &L,int dlta[],int t){//按增量序列dlta[0..t-1]对顺序表L作希尔排序,t是增量序列的长度for(k=O; k<t; ++k)Shellnsert(L,dlta[k]);  //一趟增量为dlta[k]的插入排序
}//ShellSortvoid ShellInsert(SqList &L,int dk){  //对顺序表L进行一趟增量为dk的Shell排序,dk为步长因子//和一趟直接插入排序相比,做了以下修改://1.前后记录位置的增量是dk,不是1//2.r[0]只是暂存单元,不是哨兵,当j<=0时,插入位置已找到for(i = dk+1; i <= L.length; ++i)  //dk间隔排序,从dk+1开始排序,例如前面讲的一趟直接插入排序从第2个元素开始排序if(r[i].key < r[i-dk].key){  //比前面的大则不需要执行插入操作L.r[0] = L.r[i];  //暂存在L.r[0]for(j = i-dk; j>0 &&(r[0].key < r[j].key); j = j-dk)r[j+dk]=r[j];  //后移L.r[j+dk]=L.r[0];  //插入,退出循环时r[j]<r[0],所以插到L.r[j+dk]的位置}
}

希尔排序的算法效率与增量序列的取值有关。

对于Hibbard增量序列,D_k=2^k-1,相邻元素互质。最坏情况T_{worst}=O(n^{3/2});猜想:T_{avg}=O(n^{5/4})
Sedgewick增量序列{1,5,19,41,109...},D_k=9*4^i-9*2^i+1D_k=4^i-3*2^i+1。猜想:T_{avg}=O(n^{7/6})T_{worst}=O(n^{4/3})

希尔排序法是一种不稳定的排序算法,例如对下面d=2的情况:

总结:对希尔排序来说,时间复杂度是n和d的函数,空间复杂度是O(1),是一种不稳定的排序方法。关于如何选择最佳d序列,目前尚未有解决方案。但是,最后一个增量值必须为1,其他序列元素之间无除了1之外的公因子。此外,希尔排序不宜在链式存储结构上实现。

二. 交换排序

基本思想:两两比较,如果发生逆序则交换,直到所有记录都排好序为止。

常见的交换排序方法:冒泡排序,快速排序。

(1)冒泡排序

给定初始序列:21,25,49,25*,16,08,n=6。

第1趟:
位置0,1进行比较——判断——不交换——结果:21,25,49,25*,16,08

位置1,2进行比较——判断——不交换——结果:21,25,49,25*,16,08

位置2,3进行比较——判断——交换——结果:21,25,25*,49,16,08

位置3,4进行比较——判断——交换——结果:21,25,25*,16,49,08

位置4,5进行比较——判断——交换——结果:21,25,25*,16,08,49

第1趟结束后:21,25,25*,16,08,49
第2趟:

位置0,1进行比较——判断——不交换——结果:21,25,25*,16,08,49

位置1,2进行比较——判断——不交换——结果:21,25,25*,16,08,49

位置2,3进行比较——判断——交换——结果:21,25,16,25*,08,49

位置3,4进行比较——判断——交换——结果:21,25,16,08,25*,49

第2趟结束后:21,25,16,08,25*,49

继续下一趟,每一趟增加一个有序元素。
第3趟结果:21,16,08,25,25*,49

第4趟结果:16,08,21,25,25*,49

第5趟结果:08,16,21,25,25*,49

总结:n个记录,需要比较n-1趟。第m趟需要比较n-m次。

void bubble_sort(SqList &L){  //冒泡排序算法int m,i,j; RedType x;  //交换时临时存储for(m=1; m<=n-1; m++){  //总共需n-1趟for(j=1; j<=n-m; j++)  //第m趟需要比较n-m次if(L.r[j].key > L.r[j+1].key){  //发生逆序x=L.r[j]; L.r[j]=L.r[j+1]; L.r[j+1]=x;  //交换}//endif}//for
}

冒泡排序的优点:每趟结束时,不仅能挤出一个最大值到最后面位置,还能同的部力理顺其他元素。实际上,一旦某一趟比较时不出现记录交换,说明已排好序了,就可以结束本算法。所以我们可以增设一个标识flag:

void bubble_sort(SqList &L){  //改进的冒泡排序算法int m,i,j;flag=1;  //flag作为是否有交换的标记RedType x; for(m=1; m<=n-1 && flag==1; m++){flag=0;for(j=1; j<=n-m; j++){if(L.r[j].key>L.r[j+1].key){//发生逆序flag=1;  //发生交换,flag置为1,若本趟没发生交换,flag保持为零x=L.r[j]; L.r[j]=L.r[j+1]; L.r[j+1]=x;  //交换}//endif}//for}
}

下面分析时间复杂度。最好情况是全为正序,这时比较次数是n-1,移动的次数是0;最坏情况是全为逆序,比较次数是\sum_{i=1}^{n-1}(n-i)=\frac{1}{2}(n^2-n),移动次数是3\sum_{i=1}^{n-1}(n-i)=\frac{3}{2}(n^2-n)(包含向中间辅助变量x移动)。所以,冒泡排序最好时间复杂度是O(n),最坏时间复杂度为O(n^2),平均时间复杂度为O(n^2)。冒泡排序算法中增加一个辅助空间temp,辅助空间为S(n)=O(1),冒泡排序是稳定的排序算法。

(2)快速排序

快速排序是一种改进的交换排序。基本思想是递归思想:任取一个元素(如:第一个)为中心pivot,所有比它小的元素一律前放,比它大的元素一律后放,形成左右两个子表。对各子表重新选择中心元素并依此规则调整,直到每个子表的元素只剩一个(结束条件)。下面的过程,每个表中都选取第一个作为中心点(分界点)。

例如:给定序列

序列共8个数,界点直接取第一个数49,并把它搬到0号位。指针low=1,high=8.由于第1个位置已空,我们从后往前移动high,找一个小于界点的数把它搬到1号位。high--,当high=7的时候,数27满足,把27搬到1号位。此时7位空出来,我们向后移动low,找一个大于界点的数搬到空出来的7号位。low++,当low=3的时候,数65满足,把65搬到7号位,此时3号位空出来。我们再往前移动high,找一个大于界点的数搬到3号位。当high=6,数字13符合,13搬到3号位,6号位又空出。继续往后移动low,low=4,数97符合,97搬到6号位,4号位空出。然后往前移动high,high=5没有符合题意的,继续向前移动至high=4,此时high与low都重合。再把界点49填到4号位。此时8个数字的表就能以4号位49为界分成两个子表:前面1-3位,后面5-8位。然后在对两个子表分别执行相同的操作。

总结:①每一趟的子表的形成是采用从两头向中间交替式逼近法;②由于每趟中对各子表的操作都相似,可采用递归算法。

void main(){QSort(L, 1, L.length);
}void QSort(SqList &L, int low, int high){  //对顺序表L快速排序if(low < high){  //长度大于1pivotloc = Partition(L, low, high);//将L一分为二,pivotloc为中心点元素排好序的位置QSort(L, low, pivotloc-1);  //对低子表递归排序QSort(L, pivotloc+1, high);  //对高子表递归排序}//end if 
}//QSortint Partition(SqList &L, int low, int high){L.r[0] = L.r[low];  //取[low,high]的第一个元素作为中心点,并搬前面去 pivotkey = L.r[low].key;  //这里也是取中心点while (low < high){  //循环终止的条件是low=highwhile (low < high && L.r[high].key >= pivotkey) --high;  //low指针指的地方空出,前移high,直到找到一个小于pivotkey的L.r[low] = L.r[high];  //然后搬到空出的地方low,此时high又空出来while (low < high && L.r[low].key <= pivotkey) ++low;  //high指针指的地方空出,后移low,直到找到一个大于pivotkey的L.r[high] = L.r[low];  //然后搬到空出的地方high,此时low又空出来}L.r[low]=L.r[0];  //退出循环,再把最后指针重合的地方就是空的地方,填回中心点return low;  //返回中心点所在的位置
}

下面分析算法效率:可以证明,时间复杂度是O(nlog_2n),其中对上面的Qsort()是O(log_2n),对下面的Partition()是O(n)。实验结果表明:就平均计算时间而言,快速排序是我们所讨论的所有内排序方法中最好的一个。

接下来分析空间复杂度:快速排序不是原地排序。由于程序中使用了递归,需要递归调用栈的支持,而栈的长度取决于递归调用的深度(即使不用递归,也需要用用户栈)。在平均情况下,需要O(logn)的栈空间;最坏情况下,栈空间可达O(n)。

快速排序同前面的希尔排序,它也是不稳定的排序算法。例如:49,38,49*,20,97,76,经过一次划分后:20,38,49*,49,97,76。

快速排序不适于对原本有序或基本有序的记录序列进行排序。例如,对(46,50,68,74,79,85,90)进行快速排序,会发现:由于每次枢轴记录的关键字都是小于其它所有记录的关键字,致使一次划分之后得到的子序列(1)的长度为0,这时已经退化成为没有改进措施的冒泡排序。

划分元素的选取是影响时间性能的关键。输入数据次序越乱,所选划分元素值的随机性越好,排序速度反而越快,快速排序不是自然排序方法。需要注意的是,改变划分元素的选取方法,至多只能改变算法平均情况的下的世界性能,无法改变最坏情况下的时间性能。即最坏情况下,快速排序的时间复杂度总是O(n^2)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118822.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(六)k8s实战-存储管理

一、Volumes 1、HostPath 【使用场景&#xff1a;容器目录 挂载到 主机目录】 【可以持久化到主机上】 将节点上的文件或目录挂载到 Pod 上&#xff0c;此时该目录会变成持久化存储目录&#xff0c;即使 Pod 被删除后重启&#xff0c;也可以重新加载到该目录&#xff0c;该目…

【算法题】1761. 一个图中连通三元组的最小度数

题目&#xff1a; 给你一个无向图&#xff0c;整数 n 表示图中节点的数目&#xff0c;edges 数组表示图中的边&#xff0c;其中 edges[i] [ui, vi] &#xff0c;表示 ui 和 vi 之间有一条无向边。 一个 连通三元组 指的是 三个 节点组成的集合且这三个点之间 两两 有边。 连…

恢复数据的利器:易我数据恢复终身技术版v16.2.0.0

EaseUS Data Recovery Wizard为全球提供数据恢复方案,用于误删数据数据,电脑误删文件恢复,格式化硬盘数据恢复,手机U盘数据恢复等,RAID磁盘阵列数据恢复,分区丢失及其它未知原因丢失的数据恢复,简单易用轻松的搞定数据恢复。 特点描述 - 易我数据恢复中文便携版&#xff0c;无…

Kitchen Hook

双扛厨房排钩&#xff1a;挂刀具

HuggingFace 简介

HuggingFace 简介 0. HuggingFace 简介1. HuggingFace 官网地址2. HuggingFace 标准研发流程3. HuggingFace 工具集4. 编码工具4.1 编码工具介绍4.2 使用编码工具 5. 数据集工具5.1 数据集工具介绍5.2 使用数据集工具 6. 评价指标工具6.1 评价指标工具介绍6.2 使用评价指标工具…

vmware 16增加硬盘容量并在Ubuntu 18.04上边格式化并挂载

参考了《增加 VM虚拟机硬盘容量》 《Linux学习之分区挂载》中有给VMWare 16虚拟机添加一块硬盘的内容&#xff0c;需要先参考添加硬盘。 sudo mkfs.ext4 /dev/sda4给/dev/sda4进行ext4格式化。 sudo mkdir /mountsda4新建一个挂载目录。 sudo mount -t ext4 /dev/sda4 /mo…

gitlab升级

1.下载需要的版本 wget -c https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/gitlab-ce-15.7.6-ce.0.el7.x86_64.rpm --no-check-certificate gitlab-ce-15.4.6-ce.0.el7.x86_64.rpm gitlab-ce-15.7.6-ce.0.el7.x86_64.rpm gitlab-ce-15.9.7-ce.0.el7.x86_64.rpm g…

可扩展的Blender插件开发汇总

成熟的 Blender 3D 插件是令人惊奇的事情。作为 Python 和 Blender 的新手,我经常发现自己被社区中的人们创造的强大的东西弄得目瞪口呆。坦率地说,其中一些包看起来有点神奇,当自我怀疑或冒名顶替综合症的唠叨声音被打破时,很容易想到“如果有人能做出可以做xxx的东西就好…

JS踩坑: for let 和 for var的区别

最近踩了一个js的坑 踩坑代码 如下两段代码&#xff0c;看起来没什么区别&#xff0c;但是实际运行效果却不一样 for (let i 0; i < 10; i) {console.log("for:" i);setTimeout(() > {console.log("setTimeout:" i);}, 1000); }输出&#xff1…

openGauss学习笔记-55 openGauss 高级特性-全密态数据库

文章目录 openGauss学习笔记-55 openGauss 高级特性-全密态数据库55.1 连接全密态数据库55.2 创建用户密钥55.3 创建加密表55.4 向加密表插入数据并进行查询 openGauss学习笔记-55 openGauss 高级特性-全密态数据库 全密态数据库意在解决数据全生命周期的隐私保护问题&#xf…

git学习笔记 | 版本管理 - 分支管理

文章目录 git学习笔记Git是什么仓库常见的命令commit 备注规范在文件下设置git忽略文件 .gitignore 版本管理git log | git reflog 查看提交日志/历史版本版本穿梭 git resetgit reset HEAD <file> git checkout -- fileName 丢弃工作区的修改git revertGit恢复之前版本的…

裸露土方智能识别算法 python

裸露土方智能识别算法通过opencvpython网络模型框架算法&#xff0c;裸露土方智能识别算法能够准确识别现场土堆的裸露情况&#xff0c;并对超过40%部分裸露的土堆进行抓拍预警。此次算法用到的Python是一种由Guido van Rossum开发的通用编程语言&#xff0c;它很快就变得非常流…

Visual Studio(2022)生成链接过程的.map映射文件以及.map映射文件的内容说明

微软的官方说明 /MAP&#xff08;生成映射文件&#xff09; | Microsoft Learn 设置步骤 1. 右键项目属性, 连接器 -> 常规 -> 启用增量链接&#xff0c;设置为否。如下图&#xff1a; 2. 连接器 -> 调试 生成调试信息 设置为 生成调试信息 (/DEBUG) 生成程序数据库…

风险评估

风险评估概念 风险评估是一种系统性的方法&#xff0c;用于识别、评估和量化潜在的风险和威胁&#xff0c;以便组织或个人能够采取适当的措施来管理和减轻这些风险。 风险评估的目的 风险评估要素关系 技术评估和管理评估 风险评估分析原理 风险评估服务 风险评估实施流程

AutoSAR CP 飞阅TIME

目录 什么是autosar autosar 做了什么 Foundation、CP、AP CLASSIC PLATFORM &#xff08;CP&#xff09; ADAPTIVE PLATFORM 基于autosar 开发 SWC Port Runnables RTE BSW MCAL CDD I/O Hardware Abstraction Communication Hardware Abstraction Memory Har…

C#基础知识点记录

目录 课程一、C#基础1.C#编译环境、基础语法2.Winform-后续未学完 课程二、Timothy C#底层讲解一、类成员0常量1字段2属性3索引器5方法5.1值参数&#xff08;创建副本&#xff0c;方法内对值的操作&#xff0c;不会影响原来变量的值&#xff09;5.2引用参数&#xff08;传的是地…

财务部发布《企业数据资源相关会计处理暂行规定》

导读 财务部为规范企业数据资源相关会计处理&#xff0c;强化相关会计信息披露&#xff0c;根据《中华人民共和国会计法》和相关企业会计准则&#xff0c;制定了《企业数据资源相关会计处理暂行规定》。 加gzh“大数据食铁兽”&#xff0c;回复“20230828”获取材料完整版 来…

【Java核心知识】JUC包相关知识

文章目录 JUC包主要内容Java内置锁为什么会有线程安全问题Synchronize锁Java对象结构Synchronize锁优化线程间通信Synchronize与wait原理 CAS和JUC原子类CAS原理JUC原子类ABA问题 可见性和有序性为什么会有可见性参考链接 显式锁Lock接口常用方法显式锁分类显式锁实现原理参考链…

gitlab-runner安装和部署项目

目录 1.安装gitlab-runner 1.1 添加官方仓库 1.2.1 安装最新版本 1.2.2 安装指定版本&#xff08;可选&#xff09; 1.2.3 更新runner&#xff08;可选&#xff09; 1.3 随便点开gitlab上的一个项目 1.4 gitlab-runner的注册 2.配置gitlab-runner 3.runner一些命令 gi…