知识图谱项目实践

目录

步骤

SpaCy

Textacy——Text Analysis for Cybersecurity

Networkx

Dateparser

导入库

写出页面的名称

​编辑

自然语言处理

 词性标注

可能标记的完整列表

依存句法分析(Dependency Parsing,DEP)

可能的标签完整列表

实例理解POS与DEP

可视化注释 

Spacy还可执行命名实体识别

可能的所有标签的完整列表

Spacy图形工具

实体和关系抽取 

构建图表

网络图


使用Python和自然语言处理构建知识图谱。

知识图谱被视为自然语言处理领域的一部分,因为要构建“知识”,需要进行“语义增强”过程。由于没有人想要手动执行此任务,因此我们需要使用机器和自然语言处理算法来完成此任务。

我们将解析维基百科并提取一个页面,用作本数据集。

俄乌战争-维基百科

步骤

  • 设置:使用维基百科API进行网页爬取以读取包和数据。
  • NLP使用SpaCy:对文本进行分句、词性标注、依存句法分析和命名实体识别。
  • 提取实体及其关系:使用Textacy库来识别实体并建立它们之间的关系。
  • 网络图构建:使用NetworkX库来创建和操作图形结构。
  • 时间轴图:使用DateParser库来解析日期信息并生成时间轴图。

SpaCy

"spaCy" 这个名称是从 "Space"(空间) 这个词汇中来的,它代表了 spaCy 设计的初衷,即为了提供一个轻量级、高性能的自然语言处理(NLP)库。

SpaCy是一个自然语言处理(NLP)库和工具包,用于处理和分析文本数据。它被设计成高效、快速且易用的工具,具有许多功能,包括分词、命名实体识别、依存关系分析、文本分类等。SpaCy支持多种语言,并提供了预训练的词向量模型。它广泛用于文本挖掘、信息检索、自动化文本分类、情感分析、实体识别、机器翻译等领域。

Textacy——Text Analysis for Cybersecurity

Textacy的名称来源于"Text Analysis for Cybersecurity"(网络安全文本分析),这个名称强调了该库最初的用途,即在网络安全领域中对文本数据进行分析。然而,随着时间的推移,Textacy的功能扩展到了更广泛的自然语言处理和文本挖掘任务,包括情感分析、实体识别、主题建模等,因此它的名称也逐渐演化成了更通用的文本分析工具。

Networkx

NetworkX是一个用于创建、操作和研究复杂网络(图)的Python库。它提供了丰富的功能和工具,使用户能够轻松地构建、分析和可视化各种类型的网络,包括社交网络、网络拓扑、生物网络、交通网络等。

Dateparser

"dateparser" 是一个Python库,用于解析日期和时间字符串。它的主要功能是将各种格式的日期和时间字符串转换成Python的datetime对象,以便在程序中进行日期和时间的处理和计算。

导入库

## for data
import pandas as pd  #1.1.5
import numpy as np  #1.21.0## for plotting
import matplotlib.pyplot as plt  #3.3.2## for text
import wikipediaapi  #0.5.8
import nltk  #3.8.1
import re## for nlp
import spacy  #3.5.0
from spacy import displacy
import textacy  #0.12.0## for graph
import networkx as nx  #3.0 (also pygraphviz==1.10)## for timeline
import dateparser #1.1.7

Wikipedia-api是一个Python库,可轻松解析Wikipedia页面。我们将使用这个库来提取所需的页面,但会排除页面底部的所有“注释”和“参考文献”内容。

写出页面的名称

topic = "Russo-Ukrainian War"wiki = wikipediaapi.Wikipedia('en')
page = wiki.page(topic)
txt = page.text[:page.text.find("See also")]
txt[0:500] + " ..."

  • topic = "Russo-Ukrainian War":在这一行中,定义了一个名为 topic 的变量,其中存储了要查询的维基百科主题,即 "Russo-Ukrainian War"(俄乌战争)。
  • wiki = wikipediaapi.Wikipedia('en'):在这一行中,创建了一个名为 wiki维基百科API的实例,使用了英语语言版('en'表示英语)。
  • page = wiki.page(topic):这一行使用 wiki 实例的 page 方法来获取与主题 topic 相关的维基百科页面。这将返回一个包含页面内容的对象,存储在名为 page 的变量中。
  • txt = page.text[:page.text.find("See also")]:这一行代码从获取的维基百科页面文本中提取了感兴趣的部分。它使用了字符串切片和 .find() 方法,首先查找文本中 "See also"(通常表示相关链接的部分)的位置,然后将文本截断到这个位置之前,从而得到了页面的一部分文本。这部分文本存储在名为 txt 的变量中。
  • txt[0:500] + " ...":最后一行代码将前500个字符的文本内容提取出来,然后附加了 " ...",以表示文本的截断。这个结果存储在 txt 变量中,它包含了从维基百科页面提取的前500个字符的内容。

自然语言处理

#python -m spacy download en_core_web_smnlp = spacy.load("en_core_web_sm")
doc = nlp(txt)
  • #python -m spacy download en_core_web_sm:这是一个注释行,用于表示在终端或命令行中执行的操作。它指示用户下载spaCy的英语语言模型"en_core_web_sm"。这个模型包括了一些用于处理英语文本的语言数据和算法。
  • nlp = spacy.load("en_core_web_sm"):在这一行代码中,首先导入了spaCy库(前提是已经安装了spaCy库)。然后,使用spacy.load()函数加载了之前下载的英语语言模型"en_core_web_sm"。加载后的模型被存储在名为nlp的变量中,以便后续对文本数据进行处理。
  • doc = nlp(txt):在这一行代码中,使用已加载的模型nlp对文本数据txt进行处理。nlp(txt)将文本数据传递给已加载的模型,返回一个Doc对象,其中包含了对文本进行了分词、词性标注、命名实体识别等自然语言处理任务的结果。这个Doc对象存储了文本的各种信息,可以用于进一步的文本分析和处理。

看SpaCy将文本分成了多少个句子:

lst_docs = [sent for sent in doc.sents]
print("tot sentences:", len(lst_docs))

lst_docs = [sent for sent in doc.sents]:这一行代码使用了列表推导式(List Comprehension)来遍历doc对象中的每个句子,并将它们存储在一个名为lst_docs的列表中。列表推导式的语法是[expression for item in iterable],在这里,expression是用于生成列表元素的表达式,item是迭代的每个元素,iterable是要迭代的对象。因此,这行代码遍历doc.sents,它是doc对象中句子的一个生成器(generator),并将每个句子添加到lst_docs列表中。

 词性标注

即用适当的语法标签标记句子中的每个单词的过程

可能标记的完整列表

  • ADJ: 形容词,例如big,old,green,incomprehensible,first
  • ADP: 介词,例如in,to,during
  • ADV: 副词,例如very,tomorrow,down,where,there
  • AUX: 助动词,例如is,has(done),will(do),should(do)
  • CONJ: 连词,例如and,or,but
  • CCONJ: 并列连词,例如and,or,but
  • DET: 限定词,例如a,an,the
  • INTJ: 感叹词,例如psst,ouch,bravo,hello
  • NOUN: 名词,例如girl,cat,tree,air,beauty
  • NUM: 数词,例如1,2017,one,seventy-seven,IV,MMXIV
  • PART: 助词,例如's,not
  • PRON: 代词,例如I,you,he,she,myself,themselves,somebody
  • PROPN: 专有名词,例如Mary,John,London,NATO,HBO
  • PUNCT: 标点符号,例如.,(,),?
  • SCONJ: 从属连词,例如if,while,that
  • SYM: 符号,例如$,%,§,©,+,-,×,÷,=,:),表情符号
  • VERB: 动词,例如run,runs,running,eat,ate,eating
  • X: 其他,例如sfpksdpsxmsa
  • SPACE: 空格

依存句法分析(Dependency Parsing,DEP)

模型还会尝试理解单词对之间的关系。

可能的标签完整列表

  • ACL:作为名词从句的修饰语
  • ACOMP:形容词补语
  • ADVCL:状语从句修饰语
  • ADVMOD:状语修饰语
  • AGENT:主语中的动作执行者
  • AMOD:形容词修饰语
  • APPOS:同位语
  • ATTR:主谓结构中的谓语部分
  • AUX:助动词
  • AUXPASS:被动语态中的助动词
  • CASE:格标记
  • CC:并列连词
  • CCOMP:从句补足语
  • COMPOUND:复合修饰语
  • CONJ:连接词
  • CSUBJ:主语从句
  • CSUBJPASS:被动语态中的主语从句
  • DATIVE:与双宾语动词相关的间接宾语
  • DEP:未分类的依赖
  • DET:限定词
  • DOBJ:直接宾语
  • EXPL:人称代词
  • INTJ:感叹词
  • MARK:标记
  • META:元素修饰语
  • NEG:否定修饰语
  • NOUNMOD:名词修饰语
  • NPMOD:名词短语修饰语
  • NSUBJ:名词从句主语
  • NSUBJPASS:被动语态中的名词从句主语
  • NUMMOD:数字修饰语
  • OPRD:宾语补足语
  • PARATAXIS:并列结构
  • PCOMP:介词的补足语
  • POBJ:介词宾语
  • POSS:所有格修饰语
  • PRECONJ:前置连词
  • PREDET:前置限定词
  • PREP:介词修饰语
  • PRT:小品词
  • PUNCT:标点符号
  • QUANTMOD:量词修饰语
  • RELCL:关系从句修饰语
  • ROOT:句子主干
  • XCOMP:开放性从句补足语

实例理解POS与DEP

i = 3
list_docs[3]

检查 NLP 模型预测的 POS 和 DEP 标签

for token in lst_docs[i]:print(token.text, "-->", "pos: "+token.pos_, "|", "dep: "+token.dep_, "")
  • token.texttoken对象的text属性表示词汇的原始文本内容,即单词或标点符号的字符串。
  • "-->":这部分代码只是一个字符串,用于分隔词汇信息的不同部分,以便输出更易读。
  • "pos: "+token.pos_token对象的pos_属性表示词汇的词性(Part-of-Speech,POS)。该部分将词汇的词性标签添加到输出中,例如:"pos: NOUN" 表示名词。
  • "|":这部分代码只是一个字符串,用于分隔不同词汇信息。
  • "dep: "+token.dep_token对象的dep_属性表示词汇与句子中其他词汇的依存关系。该部分将词汇的依存关系标签添加到输出中,例如:"dep: nsubj" 表示名词主语。

可视化注释 

SpaCy提供了一个图形工具来可视化这些注释

from spacy import displacydisplacy.render(lst_docs[i], style="dep", options={"distance":100})

displacy.render(lst_docs[i], style="dep", options={"distance":100})这是用于渲染句子依存关系图的函数调用。它包括以下参数:

  • lst_docs[i]:这是要可视化的文本数据,通常是一个Doc对象,或者在这里是句子的Doc对象,表示要可视化的句子。

  • style="dep":这个参数指定了可视化的样式。在这里,我们选择了"dep",表示依存关系图。

  • options={"distance":100}:这是一个字典参数,用于配置可视化选项。在这里,我们设置了"distance"参数,以控制词汇之间的水平距离。较大的距离可以使图更易于阅读。您可以根据需要自定义其他可视化选项。

  • 最重要的标记是动词 ( POS=VERB ),因为它是句子中含义的词根 ( DEP=ROOT )。
  • 助词,如副词和副词 ( POS=ADV/ADP ),通常作为修饰语 ( *DEP=mod ) 与动词相关联,因为它们可以修饰动词的含义。例如,“ travel to ”和“ travel from ”具有不同的含义,即使词根相同(“ travel ”)。
  • 在与动词相连的单词中,必须有一些名词(POS=PROPN/NOUN)作为句子的主语和宾语( *DEP=nsubj/obj )。
  • 名词通常位于形容词 ( POS=ADJ ) 附近,作为其含义的修饰语 ( DEP=amod )。例如,在“好人”和“坏人”中,形容词赋予名词_“人”相反的含义。 

Spacy还可执行命名实体识别

可能的所有标签的完整列表
  • 人名: 包括虚构人物。
  • 国家、宗教或政治团体:民族、宗教或政治团体。
  • 地点:建筑、机场、高速公路、桥梁等。
  • 公司、机构等:公司、机构等。
  • 地理位置:国家、城市、州。
  • 地点:非国家地理位置,山脉、水域等。
  • 产品:物体、车辆、食品等(不包括服务)。
  • 事件:命名飓风、战斗、战争、体育赛事等。
  • 艺术作品:书籍、歌曲等的标题。
  • 法律:成为法律的指定文件。
  • 语言:任何命名的语言。
  • 日期:绝对或相对日期或期间。
  • 时间:小于一天的时间。
  • 百分比:百分比,包括“%”。
  • 货币:货币价值,包括单位。
  • 数量:衡量重量或距离等。
  • 序数: “第一”,“第二”等。
  • 基数:不属于其他类型的数字。
for ent in lst_docs[i].ents:print(tag.text, f"({tag.label_})")

print(tag.text, f"({tag.label_})"):在每次迭代中,使用 print() 函数打印每个实体的文本内容和实体类型标签。

  • tag.text:这是实体对象的 text 属性,表示实体的原始文本内容。

  • f"({tag.label_})":这是一个格式化字符串,用于将实体的类型标签添加到输出中。在字符串中使用了f开头的字符串字面值,它允许在字符串中插入表达式,这里插入了实体的类型标签,标签位于括号中。

  • 花括号 {} 在格式化字符串中用于表示占位符,可以在运行时将变量或表达式的值插入到字符串中。

在spaCy中,实体(命名实体)对象通常包含两个重要的属性:ent.textent.label_,它们分别表示实体的文本内容和实体类型标签。

Spacy图形工具

displacy.render(lst_docs[i], style="ent")

实体和关系抽取 

对于每个句子,我们将提取主语和宾语以及它们的修饰语、复合词和它们之间的标点符号。

## extract entities and relations
dic = {"id":[], "text":[], "entity":[], "relation":[], "object":[]}for n,sentence in enumerate(lst_docs):lst_generators = list(textacy.extract.subject_verb_object_triples(sentence))  for sent in lst_generators:subj = "_".join(map(str, sent.subject))obj  = "_".join(map(str, sent.object))relation = "_".join(map(str, sent.verb))dic["id"].append(n)dic["text"].append(sentence.text)dic["entity"].append(subj)dic["object"].append(obj)dic["relation"].append(relation)## create dataframe
dtf = pd.DataFrame(dic)## example
dtf[dtf["id"]==i]

构建图表

网络图

Python标准库中用于创建和操作图网络的是NetworkX。我们可以从整个数据集开始创建图形,但如果节点太多,可视化将变得混乱:

## create full graph
G = nx.from_pandas_edgelist(dtf, source="entity", target="object", edge_attr="relation", create_using=nx.DiGraph())## plot
plt.figure(figsize=(15,10))pos = nx.spring_layout(G, k=1)
node_color = "skyblue"
edge_color = "black"nx.draw(G, pos=pos, with_labels=True, node_color=node_color, edge_color=edge_color, cmap=plt.cm.Dark2, node_size=2000, connectionstyle='arc3,rad=0.1')nx.draw_networkx_edge_labels(G, pos=pos, label_pos=0.5, edge_labels=nx.get_edge_attributes(G,'relation'),font_size=12, font_color='black', alpha=0.6)
plt.show()
  • G = nx.from_pandas_edgelist(dtf, source="entity", target="object", edge_attr="relation", create_using=nx.DiGraph()):这行代码使用 NetworkX 库创建了一个有向图(DiGraph)。具体解释如下:
  • nx.from_pandas_edgelist(dtf, source="entity", target="object", edge_attr="relation", create_using=nx.DiGraph()):这个函数将 Pandas 数据帧 dtf 转换为一个有向图。在有向图中,实体作为节点,关系作为有向边,而 "entity" 列和 "object" 列包含了节点之间的连接,"relation" 列包含了边的属性(关系)。
  • plt.figure(figsize=(15,10)):这行代码创建一个新的图形画布,指定了画布的大小为 15x10 像素。
  • pos = nx.spring_layout(G, k=1):这行代码使用 NetworkX 的 spring_layout 函数布局图形中的节点位置,其中 G 是创建的有向图。k=1 控制了节点之间的相互排斥力,影响图形的布局。
  • node_coloredge_color:这两行代码定义了节点和边的颜色。
  • nx.draw(...):这个函数用于绘制图形。以下是参数的含义:
  • G:要绘制的图形。
  • pos=pos:节点位置的布局。
  • with_labels=True:是否显示节点的标签。
  • node_color=node_color:节点的颜色。
  • edge_color=edge_color:边的颜色。
  • cmap=plt.cm.Dark2:用于定义节点颜色映射的颜色映射。
  • nx.draw_networkx_edge_labels(...):这个函数用于在图形上绘制边的标签。以下是参数的含义:
  • pos=pos:节点位置的布局。
  • label_pos=0.5:标签相对于边的位置。
  • edge_labels=nx.get_edge_attributes(G,'relation'):从图中获取边的属性(关系)作为标签。
  • font_size=12:标签的字体大小。
  • font_color='black':标签的字体颜色。
  • alpha=0.6:标签的透明度。
  • plt.show():这行代码用于显示绘制好的图形。

知识图谱可以让我们从大局的角度看到所有事物的相关性,但是如果直接看整张图就没有什么用处。因此,最好根据我们所需的信息应用一些过滤器。对于这个例子,我将只选择涉及最常见实体的部分(基本上是最多连接的节点):

先找出最多连接的节点

dtf["entity"].value_counts().head()

然后进行过滤操作并进行可视化

## filter
f = "Russia"
tmp = dtf[(dtf["entity"]==f) | (dtf["object"]==f)]## create small graph
G = nx.from_pandas_edgelist(tmp, source="entity", target="object", edge_attr="relation", create_using=nx.DiGraph())## plot
plt.figure(figsize=(15,10))pos = nx.spring_layout(G, k=0.5)
node_color = ["red" if node==f else "skyblue" for node in G.nodes]
edge_color = ["red" if edge[0]==f else "black" for edge in G.edges]nx.draw(G, pos=pos, with_labels=True, node_color=node_color, edge_color=edge_color, cmap=plt.cm.Dark2, node_size=800, node_shape="o", width=1.0, connectionstyle='arc3,rad=0.1', font_size=8)nx.draw_networkx_edge_labels(G, pos=pos, label_pos=0.5, edge_labels=nx.get_edge_attributes(G,'relation'),font_size=8, font_color='black', alpha=0.6)
plt.show()

对于Ukraine的效果图

​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/120038.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web自动化 —— Selenium元素定位与防踩坑

1. 基本元素定位一 from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.common.by import By # selenium Service("../../chromedriver.exe") # driver webdriver.Chrome(serviceService) # driver.…

【Linux】进程概念

文章目录 一.进程1.概念2.描述进程——pcb3.pcb(task_struct)内容分类4.查看进程(1)通过系统调用查看(2)通过ps命令查看 二.通过系统调用获取进程的PID和PPID三.通过系统调用创建子进程fork()1.fork函数创建…

锁( ReentrantLock,Synchronized)

1.lock和synchronized 语法层面 synchronized 是关键字,源码在 jvm 中,用 c 语言实现; Lock 是接口,源码由 jdk 提供,用 java 语言实现; 使用 synchronized 时,退出同步代码块锁会自动释放&…

Axure RP PC电商平台Web端交互原型模板

Axure RP PC电商平台Web端交互原型模板。原型图内容齐全,包含了用户中心、会员中心、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 在设计尺寸方面,本套模板按照主流的…

MybatisPlus 核心功能 条件构造器 自定义SQL Service接口 静态工具

MybatisPlus 快速入门 常见注解 配置_软工菜鸡的博客-CSDN博客 2.核心功能 刚才的案例中都是以id为条件的简单CRUD,一些复杂条件的SQL语句就要用到一些更高级的功能了。 2.1.条件构造器 除了新增以外,修改、删除、查询的SQL语句都需要指定where条件。因此…

12. 微积分 - 梯度积分

Hi,大家好。我是茶桁。 上一节课,我们讲了方向导数,并且在最后留了个小尾巴,是什么呢?就是梯度。 我们再来回看一下但是的这个式子: [ f x f y

打造西南交通感知新范式,闪马智能携手首讯科技落地创新中心

9月4日,2023年中国国际智能产业博览会(以下简称“智博会”)在重庆拉开帷幕。大会期间,由上海闪马智能科技有限公司(以下简称“闪马智能”)与重庆首讯科技股份有限公司(以下简称“首讯科技”&…

Logback日志记录只在控制台输出sql,未写入日志文件【解决】

原因:持久层框架对于Log接口实现方式不一样,日记记录的位置及展示方式也也不一样 mybatis-plus:configuration:log-impl: org.apache.ibatis.logging.stdout.StdOutImpl # sql只会打印到控制台不会输出到日志文件种mybatis-plus:configuration:log-impl…

前后端项目部署上线详细笔记

部署 参考文章:如何部署网站?来比比谁的方法多 - 哔哩哔哩大家好,我是鱼皮,不知道朋友们有没有试着部署过自己开发的网站呢?其实部署网站非常简单,而且有非常多的花样。这篇文章就给大家分享几种主流的前端…

DVWA失效的访问控制

失效的访问控制,可以认为是系统对一些功能进行了访问或权限限制,但因为种种原因,限制并没有生效,造成失效的访问控制漏洞,比如越权等 这里以DVWA为例,先访问低难度的命令执行并抓包 删除cookie,并在请求头…

从0到1学会Git(第二部分):Git的本地操作和管理

写在前面:本文介绍了在本地仓库进行文件的处理以及本地的合并等操作。 前置知识:文件可以处在三个区域,分别为工作区,暂存区和本地仓库,我们此文的目标即是将文件存储在本地仓库中。我们可以将文件的区域理解为,cpu中&#xff0c…

UDP和TCP协议报文格式详解

在初识网络原理(初识网络原理_蜡笔小心眼子!的博客-CSDN博客)这篇博客中,我们简单的了解了一下TCP/IP五层网络模型,这篇博客将详细的学习一下五层网络模型中传输层的两个著名协议:UDP和TCP 目录 一, 传输层的作用 二, UDP 1,UDP协议的特点 2,UDP报文格式 三, TC…

Python爬取天气数据并进行分析与预测

随着全球气候的不断变化,对于天气数据的获取、分析和预测显得越来越重要。本文将介绍如何使用Python编写一个简单而强大的天气数据爬虫,并结合相关库实现对历史和当前天气数据进行分析以及未来趋势预测。 1 、数据源选择 选择可靠丰富的公开API或网站作…

视频监控/视频汇聚/视频云存储EasyCVR平台接入华为ivs3800平台提示400报错,该如何解决?

开源EasyDarwin视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,视频云存储/安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频…

垃圾回收 - 复制算法

GC复制算法是Marvin L.Minsky在1963年研究出来的算法。说简单点,就是只把某个空间的活动对象复制到其它空间,把原空间里的所有对象都回收掉。这是一个大胆的想法。在此,我们将复制活动对象的原空间称为From空间,将粘贴活动对象的新…

Flink---1、概述、快速上手

1、Flink概述 1.1 Flink是什么 Flink的官网主页地址:https://flink.apache.org/ Flink的核心目标是“数据流上有状态的计算”(Stateful Computations over Data Streams)。 具体说明:Apache Flink是一个“框架和分布式处理引擎”,用于对无界…

面试总结 - 计算机网络

计算机网络 1 OSI 七层模型 | TCP与UDP | 响应状态码 OSI 模型 应用层: 计算机用户,以及各种应用程序和网络之间的接口,其功能是直接向用户提供服务,完成用户希望在网络上完成的各种工作。 HTTP SMTP FTP DNS 表示层: 负责数据格式的转换&…

算法笔记:二叉树

1 基本二叉树 二叉树是一种树形数据结构,其中每个节点最多有两个子节点,通常称为“左子节点”和“右子节点”。 二叉树的根是唯一没有父节点的节点,而所有其他节点都有一个父节点和零个或两个子节点。 1.1 基础术语 节点(Node&…

ApiPost7使用介绍 | HTTP Websocket

一、基本介绍 创建项目(团队下面可以创建多个项目节点,每个项目可以创建多个接口): 参数描述库(填写参数时自动填充描述): 新建环境(前置URL、环境变量很有用)&#x…

【GitLab私有仓库】在Linux上用Gitlab搭建自己的私有库并配置cpolar内网穿透

文章目录 前言1. 下载Gitlab2. 安装Gitlab3. 启动Gitlab4. 安装cpolar5. 创建隧道配置访问地址6. 固定GitLab访问地址6.1 保留二级子域名6.2 配置二级子域名 7. 测试访问二级子域名 前言 GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具&#xf…