25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表

目录

  • 240. 搜索二维矩阵 II
    • 题目描述
    • 题解
  • 148. 排序链表
    • 题目描述
    • 题解

240. 搜索二维矩阵 II

点此跳转题目链接

题目描述

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。

示例 1:

在这里插入图片描述

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2:

在这里插入图片描述

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= n, m <= 300
  • -109 <= matrix[i][j] <= 109
  • 每行的所有元素从左到右升序排列
  • 每列的所有元素从上到下升序排列
  • -109 <= target <= 109

题解

暴力算法直接遍历整个矩阵,时间复杂度为 O ( m n ) O(mn) O(mn) m 、 n m、n mn 分别为矩阵的行、列数。

由于题中矩阵在行和列上的元素都是升序的,所以想到可以从上到下逐行利用二分查找解决:

class Solution {
public:int binarySearch(const vector<int>& arr, int target) {int left = 0;int right = arr.size() - 1;while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] < target) {left = mid + 1;} else if (arr[mid] > target) {right = mid - 1;} else {return mid;}}return -1;}bool searchMatrix(vector<vector<int>>& matrix, int target) {if (matrix.empty()) {return false;}// 逐行使用二分法查找targetfor (const vector<int>& line : matrix) {if (binarySearch(line, target) != -1) {return true;}}return false;}
};

行内 n n n 个元素做二分查找的时间复杂度为 O ( l o g n ) O(logn) O(logn) ,共 m m m 行,故时间复杂度为 O ( m l o g n ) O(mlogn) O(mlogn)

不过上面两种方法似乎都过于直白简单了,考虑到这个题目带的是“中等”tag,肯定还有更高效的算法:

🔗 以下内容来自 LeetCode官方题解

我们可以从矩阵 matrix 的右上角 (0,n−1) 进行搜索。在每一步的搜索过程中,如果我们位于位置 (x,y) ,那么我们希望在以 matrix 的左下角为左下角、以 (x,y) 为右上角的矩阵中进行搜索,即行的范围为 [x,m−1] ,列的范围为 [0,y]

  • 如果 matrix[x,y]=target ,说明搜索完成
  • 如果 matrix[x,y]>target ,由于每一列的元素都是升序排列的,那么在当前的搜索矩阵中,所有位于第 y 列的元素都是严格大于 target 的,因此我们可以将它们全部忽略,即将 y 减少 1
  • 如果 matrix[x,y]<target ,由于每一行的元素都是升序排列的,那么在当前的搜索矩阵中,所有位于第 x 行的元素都是严格小于 target 的,因此我们可以将它们全部忽略,即将 x 增加 1。

在搜索的过程中,如果我们超出了矩阵的边界,那么说明矩阵中不存在 target 。代码实现如下:

class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int x = 0;int y = matrix[0].size() - 1;while (x < matrix.size() && y >= 0) {if (matrix[x][y] < target) {x++;} else if (matrix[x][y] > target) {y--;} else {return true;}}return false;}
};

时间复杂度: O ( m + n ) O(m+n) O(m+n) 。在搜索的过程中,如果我们没有找到 target ,那么我们要么将 y 减少 1,要么将 x 增加 1。由于 (x,y) 的初始值分别为 (0,n−1) ,因此 y 最多能被减少 n 次, x 最多能被增加 m 次,总搜索次数为 m+n 。在这之后, xy 就会超出矩阵的边界。


148. 排序链表

点此跳转题目链接

题目描述

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表

示例 1:

在这里插入图片描述

输入:head = [4,2,1,3]
输出:[1,2,3,4]

示例 2:

在这里插入图片描述

输入:head = [-1,5,3,4,0]
输出:[-1,0,3,4,5]

示例 3:

输入:head = []
输出:[]

提示:

  • 链表中节点的数目在范围 [0, 5 * 104]
  • -105 <= Node.val <= 105

进阶: 你可以在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序吗?

题解

暴力解法无需多言,遍历一遍链表获取全部元素、排序后重新整一个新链表即可:

struct ListNode
{int val;ListNode *next;ListNode() : val(0), next(nullptr) {}ListNode(int x) : val(x), next(nullptr) {}ListNode(int x, ListNode *next) : val(x), next(next) {}
};class Solution {
public:ListNode* sortList(ListNode* head) {vector<int> elements;while (head){elements.push_back(head->val);head = head->next;}sort(elements.begin(), elements.end());ListNode *dummyHead = new ListNode();ListNode *cur = dummyHead;for (int element : elements) {cur->next = new ListNode(element);cur = cur->next;}return dummyHead->next;}
};

上述算法时间复杂度为 sort() O ( n log ⁡ n ) O(n\log{n}) O(nlogn) ,空间复杂度为 O ( n ) O(n) O(n) ——因为新建了一个链表。 直接看看进阶要求:时间复杂度为 O ( n log ⁡ n ) O(n\log{n}) O(nlogn) ,空间复杂度为常数级。

考虑算法题中常用的高效排序算法——归并排序,有:

class Solution {
public:ListNode *merge(ListNode *L, ListNode *R) {ListNode dummyHead;ListNode *cur = &dummyHead;while (L && R) {if (L->val < R->val) {cur->next = L;L = L->next;} else {cur->next = R;R = R->next;}cur = cur->next;}cur->next = L ? L : R;return dummyHead.next;}ListNode *sortList(ListNode *head, ListNode *tail) {if (!head || head == tail) return head;// 快慢指针找到链表中点ListNode *slow = head, *fast = head;while (fast != tail && fast->next != tail) {slow = slow->next;fast = fast->next->next;}ListNode *mid = slow->next;slow->next = nullptr;  // 断开链表return merge(sortList(head, slow), sortList(mid, tail));}ListNode *sortList(ListNode *head) { return sortList(head, nullptr); }
};

上述算法时间复杂度为 O ( n log ⁡ n ) O(n\log{n}) O(nlogn) ,即归并排序的时间复杂度。空间复杂度取决于递归调用的栈空间,为 O ( log ⁡ n ) O(\log{n}) O(logn) ,还是没到最佳的常数级别。为此,需要采用“自底向上”的归并排序实现 O ( 1 ) O(1) O(1) 的空间复杂度:

🔗 以下内容参考 LeetCode官方题解

首先求得链表的长度 length ,然后将链表拆分成子链表进行合并。具体做法如下:

  • subLength 表示每次需要排序的子链表的长度,初始时 subLength=1
  • 每次将链表拆分成若干个长度为 subLength 的子链表(最后一个子链表的长度可以小于 subLength ),按照每两个子链表一组进行合并,合并后即可得到若干个长度为 subLength×2 的有序子链表(最后一个子链表的长度可以小于 subLength×2 )。合并两个子链表仍然使用之前用过的归并算法。
  • subLength 的值加倍,重复第 2 步,对更长的有序子链表进行合并操作,直到有序子链表的长度大于或等于 length ,整个链表排序完毕。

通过数学归纳法易证最后得到的链表是有序的(每次合并用到的子链表是有序的,合并后的也是有序的)。

class Solution {
public:ListNode *merge(ListNode *L, ListNode *R) {ListNode dummyHead;ListNode *cur = &dummyHead;while (L && R) {if (L->val < R->val) {cur->next = L;L = L->next;} else {cur->next = R;R = R->next;}cur = cur->next;}cur->next = L ? L : R;return dummyHead.next;}ListNode *sortList(ListNode *head) {if (!head) {return nullptr;}// 获取链表长度int length = 0;ListNode *cur = head;while (cur != nullptr) {length++;cur = cur->next;}// 自底向上,两两合并长度为subLength的子链表ListNode *dummyHead = new ListNode(0, head);for (int subLength = 1; subLength < length; subLength <<= 1) {ListNode *prev = dummyHead;cur = prev->next;while (cur != nullptr) {// 获取第一个子链表ListNode *head1 = cur;for (int i = 1; i < subLength && cur->next != nullptr; ++i) {cur = cur->next;}// 获取第二个子链表ListNode *head2 = cur->next;cur->next = nullptr;  // 断开第一个子链表结尾cur = head2;for (int i = 1; i < subLength && cur && cur->next; ++i) {cur = cur->next;}// 预存第三个子链表(即下一轮的第一个子链表)的头节点// 即第二个子链表结尾节点的next节点ListNode *nextHead = nullptr;if (cur != nullptr) {nextHead = cur->next;cur->next = nullptr;  // 断开第二个子链表结尾}// 合并第一、二个子链表ListNode *merged = merge(head1, head2);// 更新prev、cur指针prev->next = merged;while (prev->next != nullptr) {prev = prev->next;}cur = nextHead;}}return dummyHead->next;}
};

该算法时间复杂度为 O ( n log ⁡ n ) O(n \log{n}) O(nlogn) ,空间复杂度为 O ( 1 ) O(1) O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12020.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

零基础学习书生.浦语大模型-入门岛

第一关&#xff1a;Linux基础知识 Cursor连接服务器 使用Remote - SSH插件即可 注&#xff1a;46561&#xff1a;服务器端口号 运行指令 python hello_world.py端口映射 ssh -p 46561 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno …

刷题汇总一览

文章目录 贪心动态规划数据结构 本题单设计力扣、牛客等多个刷题网站 贪心 贪心后悔 徒步旅行中的补给问题 LCP 30.魔塔游戏 题目使用到的思想解题分析徒步旅行中的补给问题每次我们都加入当前补给点的k个选择&#xff0c;同时进行升序排序&#xff0c;只保留前k个元素&#…

【LLM-agent】(task2)用llama-index搭建AI Agent

note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool&#xff0c;循环执行&#xff1a;推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词&#xff0c;工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…

给AI加知识库

1、加载 Document Loader文档加载器 在 langchain_community. document_loaders 里有很多种文档加载器 from langchain_community. document_loaders import *** 1、纯文本加载器&#xff1a;TextLoader&#xff0c;纯文本&#xff08;不包含任何粗体、下划线、字号格式&am…

浅谈《图解HTTP》

感悟 滑至尾页的那一刻&#xff0c;内心突兀的涌来一阵畅快的感觉。如果说从前对互联网只是懵懵懂懂&#xff0c;但此刻却觉得她是如此清晰而可爱的呈现在哪里。 介绍中说&#xff0c;《图解HTTP》适合作为第一本网络协议书。确实&#xff0c;它就像一座桥梁&#xff0c;连接…

【hot100】刷题记录(12)-回文链表

题目描述&#xff1a; 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为 回文链表 。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true示例 2&#xff1a; …

Deep Sleep 96小时:一场没有硝烟的科技保卫战

2025年1月28日凌晨3点&#xff0c;当大多数人还沉浸在梦乡时&#xff0c;一场没有硝烟的战争悄然打响。代号“Deep Sleep”的服务器突遭海量数据洪流冲击&#xff0c;警报声响彻机房&#xff0c;一场针对中国关键信息基础设施的网络攻击来势汹汹&#xff01; 面对美国发起的这场…

自动化构建-make/Makefile 【Linux基础开发工具】

文章目录 一、背景二、Makefile编译过程三、变量四、变量赋值1、""是最普通的等号2、“:” 表示直接赋值3、“?” 表示如果该变量没有被赋值&#xff0c;4、""和写代码是一样的&#xff0c; 五、预定义变量六、函数**通配符** 七、伪目标 .PHONY八、其他常…

【Three.js+React】教程001:绘制简单的盒子

文章目录 React整合Three.js创建项目绘制一个简单的盒子添加坐标辅助器React整合Three.js 在 React 中结合 Three.js 进行 3D 开发,可以使用 React + Three.js + @react-three/fiber 进行高效渲染,同时配合 @react-three/drei 提供的封装工具,让开发更加简洁。 创建项目 …

K8S集群架构及主机准备

本次集群部署主机分布K8S集群主机配置主机静态IP设置主机名解析ipvs管理工具安装及模块加载主机系统升级主机间免密登录配置主机基础配置完后最好做个快照备份 2台负载均衡器 Haproxy高可用keepalived3台k8s master节点5台工作节点(至少2及以上)本次集群部署主机分布 K8S集群主…

SQL入门到精通 理论+实战 -- 在 MySQL 中学习SQL语言

目录 一、环境准备 1、MySQL 8.0 和 Navicat 下载安装 2、准备好的表和数据文件&#xff1a; 二、SQL语言简述 1、数据库基础概念 2、什么是SQL 3、SQL的分类 4、SQL通用语法 三、DDL&#xff08;Data Definition Language&#xff09;&#xff1a;数据定义语言 1、操…

3.5.7 基于横盘结构的分析体系——缠论(背驰/背离)

背离&#xff08;背驰&#xff09; 本文讨论背离主要从量价和时空的角度来讨论。涉及的背离类型如下表&#xff1a; 角度 类型 成交量和价格 量价背离 时间和空间 MACD背离 笔背离 盘整背离 趋势背离 表1-9 背离的角度和类型。 从成交量和价格的角度&#xff0c;本文…

51c嵌入式~电路~合集25

我自己的原文哦~ https://blog.51cto.com/whaosoft/13241709 一、“开关电源”和“普通电源”的区别 什么叫开关电源 随着电力电子技术的发展和创新&#xff0c;使得开关电源技术也在不断地创新。目前&#xff0c;开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电…

深度学习 Pytorch 基础网络手动搭建与快速实现

为了方便后续练习的展开&#xff0c;我们尝试自己创建一个数据生成器&#xff0c;用于自主生成一些符合某些条件、具备某些特性的数据集。 导入相关的包 # 随机模块 import random# 绘图模块 import matplotlib as mpl import matplotlib.pyplot as plt# 导入numpy import nu…

【文件上传】

目录 一. 介绍二. 本地存储三. 阿里云OSS3.1 准备工作3.2 入门程序3.3 案例集成3.4 程序优化 \quad 一. 介绍 \quad 三要素缺一不可 \quad 二. 本地存储 \quad 解决相同命名覆盖问题 \quad 三. 阿里云OSS \quad \quad 3.1 准备工作 \quad \quad 3.2 入门程序 \quad \quad 3.3…

Deepseek-R1 和 OpenAI o1 这样的推理模型普遍存在“思考不足”的问题

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Vue3的el-table-column下拉输入实时查询API数据选择的实现方法

由于本人对el-table-column有下拉输入选择的要求&#xff0c;根据网上搜索的资料及本人优化&#xff0c;推出我比较满意的方法&#xff0c;供各位读者参考使用。 效果图 el-table-column写法 <el-table-columnlabel"货品编号"align"center"prop"…

Electron使用WebAssembly实现CRC-8 MAXIM校验

Electron使用WebAssembly实现CRC-8 MAXIM校验 将C/C语言代码&#xff0c;经由WebAssembly编译为库函数&#xff0c;可以在JS语言环境进行调用。这里介绍在Electron工具环境使用WebAssembly调用CRC-8 MAXIM格式校验的方式。 CRC-8 MAXIM校验函数WebAssembly源文件 C语言实现C…

使用 Elastic Cloud Hosted 优化长期数据保留:确保政府合规性和效率

作者&#xff1a;来自 Elastic Jennie Davidowitz 在数字时代&#xff0c;州和地方政府越来越多地承担着管理大量数据的任务&#xff0c;同时确保遵守严格的监管要求。这些法规可能因司法管辖区而异&#xff0c;通常要求将数据保留较长时间 —— 有时从一年到七年不等。遵守刑事…

安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可查看源码&#xff09; 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…