【Yolov5+Deepsort】训练自己的数据集(3)| 目标检测追踪 | 轨迹绘制 | 报错分析解决

📢前言:本篇是关于如何使用YoloV5+Deepsort训练自己的数据集,从而实现目标检测与目标追踪,并绘制出物体的运动轨迹。本章讲解的为第三部分内容:数据集的制作、Deepsort模型的训练以及动物运动轨迹的绘制。本文中用到的数据集均为自采,实验动物为斑马鱼。

💻环境&配置:RTX 3060、CUDA Version: 11.1、torch_version:1.9.1+cu111、python:3.8

 💬源码如下:

GitHub - mikel-brostrom/yolo_tracking: A collection of SOTA real-time, multi-object tracking algorithms for object detectors

GitHub - Sharpiless/Yolov5-Deepsort: 最新版本yolov5+deepsort目标检测和追踪,能够显示目标类别,支持5.0版本可训练自己数据集

如果想进一步了解Yolov5+Deepsort中的算法,猛戳这里:

【Yolov5+Deepsort】训练自己的数据集(1)| 目标检测&追踪 | 轨迹绘制

如果想要实现训练集的采集与划分,Yolov5模型的训练,猛戳这里:

 Ⅰ Deepsort模型训练

0x00 数据集准备

Deepsort所需要的的数据集与前面Yolov5目标检测的有所不同。

这里需要借助labelimg工具手动做出标定生成xml文件,再撰写脚本把图像中的检测目标扣出来,作为我们的数据集。

import cv2
import xml.etree.ElementTree as ET
import numpy as npimport xml.dom.minidom
import os
import argparsedef main():# JPG文件的地址img_path = 'path'# XML文件的地址anno_path = 'path'# 存结果的文件夹cut_path = '/home/zqy/Desktop/yolov5-master/nxm_data/crops/'if not os.path.exists(cut_path):os.makedirs(cut_path)# 获取文件夹中的文件imagelist = os.listdir(img_path)# print(imagelistfor image in imagelist:image_pre, ext = os.path.splitext(image)img_file = img_path + imageimg = cv2.imread(img_file)xml_file = anno_path + image_pre + '.xml'# DOMTree = xml.dom.minidom.parse(xml_file)# collection = DOMTree.documentElement# objects = collection.getElementsByTagName("object")tree = ET.parse(xml_file)root = tree.getroot()# if root.find('object') == None:#     returnobj_i = 0for obj in root.iter('object'):obj_i += 1print(obj_i)cls = obj.find('name').textxmlbox = obj.find('bndbox')b = [int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)),int(float(xmlbox.find('xmax').text)),int(float(xmlbox.find('ymax').text))]img_cut = img[b[1]:b[3], b[0]:b[2], :]path = os.path.join(cut_path, cls)# 目录是否存在,不存在则创建mkdirlambda = lambda x: os.makedirs(x) if not os.path.exists(x) else Truemkdirlambda(path)try:cv2.imwrite(os.path.join(cut_path, cls, '{}_{:0>2d}.jpg'.format(image_pre, obj_i)), img_cut)except:continueprint("&&&&")if __name__ == '__main__':main()

得到完整的数据集后,我们对数据集进行划分 :

import os
from PIL import Image
from shutil import copyfile, copytree, rmtree, movePATH_DATASET = 'path'  # 需要处理的文件夹
PATH_NEW_DATASET = 'path'  # 处理后的文件夹
PATH_ALL_IMAGES = PATH_NEW_DATASET + '/all_images'
PATH_TRAIN = PATH_NEW_DATASET + '/train'
PATH_TEST = PATH_NEW_DATASET + '/test'# 定义创建目录函数
def mymkdir(path):path = path.strip()  # 去除首位空格path = path.rstrip("\\")  # 去除尾部 \ 符号isExists = os.path.exists(path)  # 判断路径是否存在if not isExists:os.makedirs(path)  # 如果不存在则创建目录print(path + ' 创建成功')return Trueelse:# 如果目录存在则不创建,并提示目录已存在print(path + ' 目录已存在')return Falseclass BatchRename():'''批量重命名文件夹中的图片文件'''def __init__(self):self.path = PATH_DATASET  # 表示需要命名处理的文件夹# 修改图像尺寸def resize(self):for aroot, dirs, files in os.walk(self.path):# aroot是self.path目录下的所有子目录(含self.path),dir是self.path下所有的文件夹的列表.filelist = files  # 注意此处仅是该路径下的其中一个列表# print('list', list)# filelist = os.listdir(self.path) #获取文件路径total_num = len(filelist)  # 获取文件长度(个数)for item in filelist:if item.endswith('.jpg'):  # 初始的图片的格式为jpg格式的(或者源文件是png格式及其他格式,后面的转换格式就可以调整为自己需要的格式即可)src = os.path.join(os.path.abspath(aroot), item)# 修改图片尺寸到128宽*256高im = Image.open(src)out = im.resize((128, 256), Image.ANTIALIAS)  # resize image with high-qualityout.save(src)  # 原路径保存def rename(self):for aroot, dirs, files in os.walk(self.path):# aroot是self.path目录下的所有子目录(含self.path),dir是self.path下所有的文件夹的列表.filelist = files  # 注意此处仅是该路径下的其中一个列表# print('list', list)# filelist = os.listdir(self.path) #获取文件路径total_num = len(filelist)  # 获取文件长度(个数)i = 1  # 表示文件的命名是从1开始的for item in filelist:if item.endswith('.jpg'):  # 初始的图片的格式为jpg格式的(或者源文件是png格式及其他格式,后面的转换格式就可以调整为自己需要的格式即可)src = os.path.join(os.path.abspath(aroot), item)# 根据图片名创建图片目录dirname = str(item.split('_')[0])# 为相同车辆创建目录# new_dir = os.path.join(self.path, '..', 'bbox_all', dirname)new_dir = os.path.join(PATH_ALL_IMAGES, dirname)if not os.path.isdir(new_dir):mymkdir(new_dir)# 获得new_dir中的图片数num_pic = len(os.listdir(new_dir))dst = os.path.join(os.path.abspath(new_dir),dirname + 'C1T0001F' + str(num_pic + 1) + '.jpg')# 处理后的格式也为jpg格式的,当然这里可以改成png格式    C1T0001F见mars.py filenames 相机ID,跟踪指数# dst = os.path.join(os.path.abspath(self.path), '0000' + format(str(i), '0>3s') + '.jpg')    这种情况下的命名格式为0000000.jpg形式,可以自主定义想要的格式try:copyfile(src, dst)  # os.rename(src, dst)print('converting %s to %s ...' % (src, dst))i = i + 1except:continueprint('total %d to rename & converted %d jpgs' % (total_num, i))def split(self):# ---------------------------------------# train_testimages_path = PATH_ALL_IMAGEStrain_save_path = PATH_TRAINtest_save_path = PATH_TESTif not os.path.isdir(train_save_path):os.mkdir(train_save_path)os.mkdir(test_save_path)for _, dirs, _ in os.walk(images_path, topdown=True):for i, dir in enumerate(dirs):for root, _, files in os.walk(images_path + '/' + dir, topdown=True):for j, file in enumerate(files):if (j == 0):  # test dataset;每个车辆的第一幅图片print("序号:%s  文件夹: %s  图片:%s 归为测试集" % (i + 1, root, file))src_path = root + '/' + filedst_dir = test_save_path + '/' + dirif not os.path.isdir(dst_dir):os.mkdir(dst_dir)dst_path = dst_dir + '/' + filemove(src_path, dst_path)else:src_path = root + '/' + filedst_dir = train_save_path + '/' + dirif not os.path.isdir(dst_dir):os.mkdir(dst_dir)dst_path = dst_dir + '/' + filemove(src_path, dst_path)rmtree(PATH_ALL_IMAGES)if __name__ == '__main__':demo = BatchRename()demo.resize()demo.rename()demo.split()

0x01 参数调整

1.修改model.py

根据数据集中的类别,修改num_classes:

🚩注:

数据集划分好后train和test文件夹下分别有多少个子文件夹,就代表有多少个类别。

即num_classes的数量。

2.修改train.py

 --data-dir:数据集文件,修改数据集的路径。

--lr:学习率,可以不用修改。

根据需求修改epoches的次数:

 可以修改权重保存的位置以及命名,以免发生覆盖:

修改dataset的预处理:

修改完成后,运行train.py开始训练,最终得到的权重结果保存在deep/checkpoint中。

至此,Deepsort部分已经全部结束。

Ⅱ 生成视频&轨迹绘制

0x00 参数设置

 将之前yolov5训练后得到的best.pt和Deepsort训练后得到的权重替换到track.py中:

修改视频的地址: 

运行track.py,得到最终视频,并在视频中显示运动轨迹。

Ⅲ 常见报错分析

为了方便新手小白快速上手,解决报错,暂不讲解报错的具体原因,只给出如何解决报错(给出最简单的解决办法),若想进一步了解报错的具体原因,可以在评论区一起交流。

0x00 未修改num_classes

报错:

解决方法:

在model.py中修改num_classes

 0x01 梯度问题

 报错:

 这个错误是由于在计算梯度的过程中,对一个叶子节点(leaf Variable)进行了原地操作(in-place operation),导致了运行时错误。PyTorch中默认情况下,autograd不支持对叶子节点进行原地操作,因为这会导致梯度计算不正确。

解决方法:

在models文件夹下的yolo.py文件中:

 添加代码:

with torch.no_grad():

0x02 显存不足

报错:

解决方法(这里提供一个最简单的方法):

更改batch_size的大小和epoch的次数。

 或者释放内存:

if hasattr(torch.cuda, 'empty_cache'):torch.cuda.empty_cache()

 ❓有更多报错大家可以写在评论区,博主看到后会尽力帮助大家。

0x03 Wandb问题

报错:

解决方法:

直接关闭wandb。

在wandb_utils.py中,将开头部分的代码:

 try:import wandbfrom wandb import init, finish
except ImportError:wandb = None

 改为:

try:import wandbfrom wandb import init, finish
except ImportError:wandb = None
wandb = None

0x04 权重pt文件不匹配

报错:

权重pt文件和新环境的YOLOv5的小版本不相同

报错代码:

YoloV5:AttributeError: Can‘t get attribute ‘C3‘ on <module ‘models.common‘ from

解决方法:在common.py中加入C3SPPF模块:

#在最上面需要引入warnings库
import warningsclass C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper(C3, self).__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))class SPPF(nn.Module):# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocherdef __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warningy1 = self.m(x)y2 = self.m(y1)return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

0x05 YOLOv5断后继续训练 

YOLOv5自带断点保存,可以恢复训练。

在train.py中,把

 改为:

parser.add_argument('--resume', nargs='?', const=True, default=True, help='resume most recent training')

default 后改为True。

运行程序,可以看到从上次中断得到地方继续训练了。

  END


📝因为作者的能力有限,所以文章可能会存在一些错误和不准确之处,恳请大家指出!

 📃参考文献:

[1] Simple Online and Realtime Tracking with a Deep Association Metric

[1703.07402] Simple Online and Realtime Tracking with a Deep Association Metric (arxiv.org)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/120243.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决微信小程序recycle-view使用百分比单位控制宽高时出现的内容溢出问题

recycle-view是微信小程序官方推出的一个经过优化的长列表组件,但是在使用百分比单位控制高宽时有个内容溢出问题,虽然它提供了height和width的参数可以设置宽高,但每次写列表都需要去js里获取宽高并设置是较为麻烦的,所以现在来着…

WordPress Page Builder KingComposer 2.9.6 Open Redirection

WordPress Page Builder KingComposer 2.9.6 Open Redirection WordPress 插件 KingComposer 版本2.9.6 以及以前版本受到开放重定向漏洞的影响。该漏洞在packetstorm网站披露于2023年7月24日,除了该漏洞,该版本的插件还存在XSS攻击的漏洞风险 图1.来自…

LeetCode(力扣)77. 组合Python

LeetCode77. 组合 题目链接代码 题目链接 https://leetcode.cn/problems/combinations/description/ 代码 class Solution:def combine(self, n: int, k: int) -> List[List[int]]:result []return self.backtracking(n, k, 1, [], result)def backtracking(self, n, k…

Java Web3J :使用web3j监听、查询、订阅智能合约的事件

前面有文章写如何使用Docker-compose方式部署blockscout浏览器+charts图表,区块链浏览器已经部署成功了,同时我们在链上增加了治理投票流程,如何实时的把治理事件快速同步到浏览器呢?这时就想到了Web3J来监听智能合约的事件,来达到同步事件的效果 目录 Web3J简介功能简介m…

用迅为RK3568开发板使用OpenCV处理图像颜色通道提取ROI

本小节代码在配套资料“iTOP-3568 开发板\03_【iTOP-RK3568 开发板】指南教程 \04_OpenCV 开发配套资料\07”目录下,如下图所示: 在计算机的色彩图像中存有三个通道,即 BGR 通道,根据三个颜色通道的亮度值来显示出不同的颜色&…

更健康舒适更科技的照明体验!书客SKY护眼台灯SUKER L1上手体验

低价又好用的护眼台灯是多数人的需求,很多人只追求功能性护眼台灯,显色高、无频闪、无蓝光等基础需求。但是在较低价格中很难面面俱到,然而刚发布的SUKER书客L1护眼台灯却是一款不可多得的性价比护眼台灯,拥有高品质光源&#xff…

MavenCentral库发布记录

最近发布了 Android 路由库 URouter,支持 AGP8、ActivityResult启动等特性。 把提交到 Maven Central 过程记录一下。 一、注册 Sonatype 账号,新建项目 注册 https://​​issues.sonatype.org 登录后,新建项目: 相关选项&…

[学习笔记] fhq Treap 平衡树

fhq Treap 也叫无旋Treap (好像?我也不知道) 反正我带旋 Treap 是不会滴,其他的平衡树也不会(但是会平板电视) fhq Treap 好写,码量小,缺点是常数比较大 定义 二叉搜索树 二叉搜…

使用QT操作Excel 表格的常用方法

VBA 简介 Microsoft Office软件通常使用VBA来扩展Windows的应用程序功能,Visual Basic for Applications(VBA)是一种Visual Basic的一种宏语言。 在VBA的参考手册中就可以看到具体函数、属性的用法,Qt操作Excel主要通过 QAxObj…

培训机构如何利用小程序提升服务质量

近年来,小程序成为了许多企业和机构进行线上业务拓展的新方式。对于培训机构来说,构建一个具有吸引力的小程序可以帮助他们更好地与学员进行互动和沟通,并提供更便捷的学习服务。那么,如何使用第三方制作平台来构建一个具有吸引力…

vscode新建vue3文件模板

输入快捷新建的名字 enter 确认后在文件中输入以下内容 {// Place your snippets for vue here. Each snippet is defined under a snippet name and has a prefix, body and// description. The prefix is what is used to trigger the snippet and the body will be expand…

32 实验三十二、OCL电路的研究

一、题目 仿真电路如图1所示。利用 Multisim 研究下列问题: (1)负载 R 6 R_6 R6​ 上能获得的最大输出功率; (2)电容 C 1 C_1 C1​、 C 2 C_2 C2​ 的作用; (3)当输入…

31 WEB漏洞-文件操作之文件包含漏洞全解

目录 文件包含漏洞原理检测类型利用修复 本地包含-无限制,有限制远程包含-无限制,有限制各种协议流玩法文章介绍读取文件源码用法执行php代码用法写入一句话木马用法每个脚本支持的协议玩法 演示案例某CMS程序文件包含利用-黑盒CTF-南邮大,i春…

春秋云镜 CVE-2018-12530

春秋云镜 CVE-2018-12530 Metinfo 6.0.0任意文件删除 靶标介绍 Metinfo 6.0.0任意文件删除。后台密码:f2xWcke5KN6pfebu 启动场景 漏洞利用 /admin进入管理后台,admin/f2xWcke5KN6pfebu /admin/app/batch/csvup.php?fileFieldtest-1&fliename…

手机无人直播软件在苹果iOS系统中能使用吗?

在现代社交媒体的时代,直播带货已经成为了一种热门的销售途径。通过直播,人们可以远程分享自己的商品,与观众进行互动,增强沟通和参与感。而如今,手机无人直播软件更是成为了直播带货领域的一项火爆的技术。那么&#…

参编三大金融国标,奇富科技以技术促行业规范化演进

近期,由中国互联网金融协会领导制定的《互联网金融智能风险防控技术要求》《互联网金融个人网络消费信贷信息披露》《互联网金融个人身份识别技术要求》三项国家标准颁布,由国家市场监督管理总局、国家标准化管理委员会发布,奇富科技作为核心…

机械零件保养3d模拟演示打消客户购买顾虑

复杂机械的工作运转是复杂的,想要对机械有深度的理解和迭代,必须了解它的运转原理及参数,复杂机械运行原因教学存在着不可视、系统庞杂及知识点多等弊病,3D虚拟展示是基于web3d网页运行的三维页面,可以将复杂机械运行过…

2023年全国职业院校技能大赛信息安全管理与评估网络安全渗透任务书

全国职业院校技能大赛 高等职业教育组 信息安全管理与评估 任务书 模块三 网络安全渗透、理论技能与职业素养 比赛时间及注意事项 本阶段比赛时长为180分钟,时间为9:00-12:00。 【注意事项】 (1)通过找到正确的flag值来获取得分,f…

【C语言】文件操作详解

文章目录 前言一、文件是什么二、文件具体介绍1.文件名2.文件类型3.文件缓冲区4.文件指针5.文件的打开和关闭 三、文件的顺序读写1.字符输入函数(fgetc)2.字符输出函数(fputc)3.文本行输入函数(fgets)4.文本…

Linux--I/O复用之select

目录 一:概念 二:使用 三:参数介绍: 1.ndfs: 2.fd_set类型: 3.readfds: 4.writefds: 5.exceptfds: 6.timeout: 7.返回值: 四&#xff1…