大模型领域的Scaling Law的含义及作用

Scaling Law就像是一个“长大公式”,用来预测当一个东西(比如模型)变大(比如增加参数、数据量)时,它的性能(比如准确率)会怎么变化。

它能帮助我们提前知道,增加多少资源能让模型变得更好,避免盲目浪费资源。不过,单纯变大也有极限,到一定程度后效果就不明显了。

—机器人领域Scaling Law(规模定律)的核心内容与应用

1.Scaling Law的核心表现

• 幂律关系:
机器人策略的泛化能力与训练数据的环境数量、物体数量及组合数量呈幂律关系。例如,模型性能与训练物体数量的幂次方成正比,相关系数高达0.8以上。

• 数据质量与多样性优先:
数据的多样性和质量对模型性能的影响远大于单纯的数据量。增加训练物体种类或环境多样性,即使每个物体的示范次数较少,也能显著提升泛化能力。

2.Scaling Law的关键发现

• 物体泛化 vs.环境泛化:

• 物体泛化:相对容易实现,增加训练物体数量可显著提升策略对未见过物体的适应能力。

• 环境泛化:
更具挑战性,但通过增加训练环境数量(如从8个增至32个),策略在复杂场景中的鲁棒性可大幅提升。

• 联合泛化的高效性:
同时增加环境和物体多样性时,模型的学习效率更高,对单一环境或物体的数据依赖降低。

3.应用与优化策略

• 高效数据收集:优先扩展环境多样性比在同一环境中收集更多物体数据更有效。当环境数量超过16个时,同一环境中添加多个物体对性能提升无显著贡献。

• 模拟与真实数据结合:通过大规模模拟数据(如清华的ManiBox框架)和真实数据混合训练,可降低数据收集成本,提升模型在真实场景中的泛化能力。

• 端到端统一模型:如自变量机器人的WALL-A模型,通过单一模型整合感知、规划与控制,利用跨任务数据共享提升泛化能力。

4.技术实现案例

• 扩散策略与视觉编码器:清华团队采用扩散策略(Diffusion Policy)和DINOv2视觉编码器,通过时间集成技术减少动作抖动,显著提升了复杂操作任务的精度。

• 空间泛化的理论突破:清华与新加坡国立大学团队提出ManiBox框架,首次揭示了空间泛化与数据量的米氏-曼特恩动力学曲线关系及空间体积与数据量的幂律关系。

5.未来展望与挑战

• 数据质量瓶颈:低质量数据可能导致模型性能下降,数千条高质量数据的效果优于数千万条低质量数据。

• 跨领域迁移:将语言或多模态大模型的Scaling Law经验迁移到机器人领域,需解决物理交互的复杂性(如摩擦力、形变等)。

• 工业与家庭应用:随着理论成熟,机器人有望在物流、医疗、家庭服务等场景中实现低成本、高泛化的部署,例如折叠衣物、精细抓取等复杂任务。

6.Scaling Law的核心价值

• 解决泛化能力不足:通过扩大训练数据的多样性,利用幂律关系提升模型对未知场景的适应能力。

• 降低数据收集成本:通过模拟数据与算法优化,减少对真实数据的依赖。

• 实现复杂任务的统一建模:通过端到端模型和扩散策略,提升多任务协同和动态物理交互的处理能力。

• 弥合模拟与真实世界的鸿沟:通过混合训练和物理增强,提升模型在真实场景中的泛化能力。

• 推动跨领域知识迁移:通过多模态预训练和元学习框架,降低对新场景的数据需求。

• 助力工业与家庭场景的规模化落地:通过优化数据需求和提升任务扩展性,实现低成本、高泛化的部署。

总结

机器人领域的Scaling Law为优化数据收集和模型训练提供了理论依据,通过多样化的数据扩展和高效的算法设计(如端到端模型、扩散策略),推动机器人从实验室走向真实世界的复杂场景。其核心在于解决泛化、效率和成本三大难题,

从“专才”到“通才”

从“昂贵”到“经济”

从“实验室”到“现实世界”

为通用机器人的实现奠定了技术基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12049.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四川正熠法律咨询有限公司正规吗可信吗?

在纷繁复杂的法律环境中,寻找一家值得信赖的法律服务机构是每一个企业和个人不可或缺的需求。四川正熠法律咨询有限公司,作为西南地区备受瞩目的法律服务提供者,以其专注、专业和高效的法律服务,成为众多客户心中的首选。 正熠法…

【leetcode练习·二叉树拓展】快速排序详解及应用

本文参考labuladong算法笔记[拓展:快速排序详解及应用 | labuladong 的算法笔记] 1、算法思路 首先我们看一下快速排序的代码框架: def sort(nums: List[int], lo: int, hi: int):if lo > hi:return# 对 nums[lo..hi] 进行切分# 使得 nums[lo..p-1]…

FPGA学习篇——开篇之作

今天正式开始学FPGA啦,接下来将会编写FPGA学习篇来记录自己学习FPGA 的过程! 今天是大年初六,简单学一下FPGA的相关概念叭叭叭! 一:数字系统设计流程 一个数字系统的设计分为前端设计和后端设计。在我看来&#xff0…

DeepSeek R1 简易指南:架构、本地部署和硬件要求

DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(Reinforcement Learning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。 技…

Vue3学习笔记-模板语法和属性绑定-2

一、文本插值 使用{ {val}}放入变量&#xff0c;在JS代码中可以设置变量的值 <template><p>{{msg}}</p> </template> <script> export default {data(){return {msg: 文本插值}} } </script> 文本值可以是字符串&#xff0c;可以是布尔…

Android学习19 -- 手搓App

1 前言 之前工作中&#xff0c;很多时候要搞一个简单的app去验证底层功能&#xff0c;Android studio又过于重型&#xff0c;之前用gradle&#xff0c;被版本匹配和下载外网包折腾的堪称噩梦。所以搞app都只有找应用的同事帮忙。一直想知道一些简单的app怎么能手搓一下&#x…

深度解读 Docker Swarm

一、引言 随着业务规模的不断扩大和应用复杂度的增加,容器集群管理的需求应运而生。如何有效地管理和调度大量的容器,确保应用的高可用性、弹性伸缩和资源的合理分配,成为了亟待解决的问题。Docker Swarm 作为 Docker 官方推出的容器集群管理工具,正是在这样的背景下崭露头…

centos stream 9 安装 libstdc++-static静态库

yum仓库中相应的镜像源没有打开&#xff0c;libstdc-static在CRB这个仓库下&#xff0c;但是查看/etc/yum.repos.d/centos.repo&#xff0c;发现CRB镜像没有开启。 解决办法 如下图开启CRB镜像&#xff0c; 然后执行 yum makecache yum install glibc-static libstdc-static…

玉米苗和杂草识别分割数据集labelme格式1997张3类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;1997 标注数量(json文件个数)&#xff1a;1997 标注类别数&#xff1a;3 标注类别名称:["corn","weed","Bean…

Docker入门篇(Docker基础概念与Linux安装教程)

目录 一、什么是Docker、有什么作用 二、Docker与虚拟机(对比) 三、Docker基础概念 四、CentOS安装Docker 一、从零认识Docker、有什么作用 1.项目部署可能的问题&#xff1a; 大型项目组件较多&#xff0c;运行环境也较为复杂&#xff0c;部署时会碰到一些问题&#xff1…

图像处理之图像灰度化

目录 1 图像灰度化简介 2 图像灰度化处理方法 2.1 均值灰度化 2.2 经典灰度化 2.3 Photoshop灰度化 2.4 C语言代码实现 3 演示Demo 3.1 开发环境 3.2 功能介绍 3.3 下载地址 参考 1 图像灰度化简介 对于24位的RGB图像而言&#xff0c;每个像素用3字节表示&#xff0…

《MPRnet》学习笔记

paper&#xff1a;2102.02808 GitHub&#xff1a;swz30/MPRNet: [CVPR 2021] Multi-Stage Progressive Image Restoration. SOTA results for Image deblurring, deraining, and denoising. 目录 摘要 1、介绍 2、相关工作 2.1 单阶段方法 2.2 多阶段方法 2.3 注意力机…

Spark的基本概念

个人博客地址&#xff1a;Spark的基本概念 | 一张假钞的真实世界 编程接口 RDD&#xff1a;弹性分布式数据集&#xff08;Resilient Distributed Dataset &#xff09;。Spark2.0之前的编程接口。Spark2.0之后以不再推荐使用&#xff0c;而是被Dataset替代。Dataset&#xff…

自动驾驶---两轮自行车的自主导航

1 背景 无人驾驶汽车最早出现在DARPA的比赛中&#xff0c;从那个时刻开始&#xff0c;逐渐引起全球学者的注意&#xff0c;于是从上个世纪开始各大高校院所开始了无人汽车的研发。直到这两年&#xff0c;无人驾驶汽车才开始走进寻常百姓家&#xff0c;虽然目前市面上的乘用车还…

L30.【LeetCode笔记】设计链表

1.题目 707. 设计链表 - 力扣&#xff08;LeetCode&#xff09; 你可以选择使用单链表或者双链表&#xff0c;设计并实现自己的链表。 单链表中的节点应该具备两个属性&#xff1a;val 和 next 。val 是当前节点的值&#xff0c;next 是指向下一个节点的指针/引用。 如果是双向…

25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表

目录 240. 搜索二维矩阵 II题目描述题解 148. 排序链表题目描述题解 240. 搜索二维矩阵 II 点此跳转题目链接 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到…

零基础学习书生.浦语大模型-入门岛

第一关&#xff1a;Linux基础知识 Cursor连接服务器 使用Remote - SSH插件即可 注&#xff1a;46561&#xff1a;服务器端口号 运行指令 python hello_world.py端口映射 ssh -p 46561 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno …

刷题汇总一览

文章目录 贪心动态规划数据结构 本题单设计力扣、牛客等多个刷题网站 贪心 贪心后悔 徒步旅行中的补给问题 LCP 30.魔塔游戏 题目使用到的思想解题分析徒步旅行中的补给问题每次我们都加入当前补给点的k个选择&#xff0c;同时进行升序排序&#xff0c;只保留前k个元素&#…

【LLM-agent】(task2)用llama-index搭建AI Agent

note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool&#xff0c;循环执行&#xff1a;推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词&#xff0c;工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…

给AI加知识库

1、加载 Document Loader文档加载器 在 langchain_community. document_loaders 里有很多种文档加载器 from langchain_community. document_loaders import *** 1、纯文本加载器&#xff1a;TextLoader&#xff0c;纯文本&#xff08;不包含任何粗体、下划线、字号格式&am…