【机器学习:四、多输入变量的回归问题】

多输入变量的回归问题

1. 多元线性回归概述

1.1 单变量线性回归与多变量线性回归的概念区分

  • 单变量线性回归:用于预测一个因变量(输出变量)与单一自变量(输入变量)之间的线性关系。模型形式为:

y = θ 0 + θ 1 x y = \theta_0 + \theta_1x y=θ0+θ1x

  • 多变量线性回归:扩展到多个自变量,模型形式为:

y = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n y = \theta_0 + \theta_1x_1 + \theta_2x_2 + \cdots + \theta_nx_n y=θ0+θ1x1+θ2x2++θnxn
或者以向量形式表示:

y = θ T x y = \mathbf{\theta}^T \mathbf{x} y=θTx

其中:

  • θ \mathbf{\theta} θ 是参数向量。
  • x \mathbf{x} x 是特征向量。

1.2 实际应用——房价预测

  • 问题描述:假设我们要预测房屋的价格,影响价格的因素可能包括:

    • 面积(平方米)。
    • 卧室数量。
    • 房屋年龄。
  • 多元回归模型的目标:根据上述多个特征建立线性回归模型,用于预测房价。

2. 向量化表示与优势

2.1 向量化表示

  • 线性回归模型的向量形式
    假设有 m m m 个样本,每个样本有 n n n 个特征,设计矩阵 X \mathbf{X} X 和参数向量 θ \mathbf{\theta} θ 定义如下:

X = [ 1 x 1 , 1 x 1 , 2 … x 1 , n 1 x 2 , 1 x 2 , 2 … x 2 , n ⋮ ⋮ ⋮ ⋱ ⋮ 1 x m , 1 x m , 2 … x m , n ] , θ = [ θ 0 θ 1 ⋮ θ n ] \mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}, \mathbf{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} X= 111x1,1x2,1xm,1x1,2x2,2xm,2x1,nx2,nxm,n ,θ= θ0θ1θn

模型预测值:

y = X θ \mathbf{y} = \mathbf{X} \mathbf{\theta} y=Xθ

2.2 向量化的优势

  • 计算效率高:利用矩阵运算可以快速计算多个样本的预测值。
  • 代码简洁:减少循环操作,简化实现。

3. 多元线性回归的优化方法

3.1 梯度下降法

  • 目标:通过最小化损失函数找到最优参数 θ \mathbf{\theta} θ
  • 损失函数

J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\mathbf{\theta}) = \frac{1}{2m} \sum_{i=1}^m \left( h_\mathbf{\theta}(\mathbf{x}^{(i)}) - y^{(i)} \right)^2 J(θ)=2m1i=1m(hθ(x(i))y(i))2

  • 梯度下降更新公式

θ : = θ − α ∂ J ( θ ) ∂ θ \mathbf{\theta} := \mathbf{\theta} - \alpha \frac{\partial J(\mathbf{\theta})}{\partial \mathbf{\theta}} θ:=θαθJ(θ)

更新过程向量化为:

θ : = θ − α 1 m X T ( X θ − y ) \mathbf{\theta} := \mathbf{\theta} - \alpha \frac{1}{m} \mathbf{X}^T (\mathbf{X} \mathbf{\theta} - \mathbf{y}) θ:=θαm1XT(Xθy)

  • 其中:

    • α \alpha α 是学习率。
    • m m m 是样本数量。

3.2 正规方程法

  • 目标:通过直接计算闭式解找到参数向量 θ \mathbf{\theta} θ
  • 公式

θ = ( X T X ) − 1 X T y \mathbf{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} θ=(XTX)1XTy

  • 特点

    • 无需选择学习率。
    • 计算量较大,尤其是特征数较多时。

4. 总结与比较

方法优点缺点
梯度下降法易于处理大规模数据集;灵活性高需要选择学习率;可能收敛较慢
正规方程法无需调参,计算直接对高维特征敏感,计算复杂度较高

应用建议

  • 当特征数较少时,优先考虑正规方程法。
  • 当样本量大或特征维度高时,选择梯度下降法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/122.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA中创建maven项目

1. IDEA中创建maven项目 在IDEA中创建Maven项目,前提是已经安装配置好Maven环境。如还未配置安装Maven的,请先下载安装。如何下载安装,可参考我另外篇文章:maven的下载与安装教程本篇教程是以创建基于servlet的JavaWeb项目为例子&…

【C++入门】详解(中)

目录 💕1.函数的重载 💕2.引用的定义 💕3.引用的一些常见问题 💕4.引用——权限的放大/缩小/平移 💕5. 不存在的空引用 💕6.引用作为函数参数的速度之快(代码体现) &#x1f4…

django基于Python的电影推荐系统

Django 基于 Python 的电影推荐系统 一、系统概述 Django 基于 Python 的电影推荐系统是一款利用 Django 框架开发的智能化应用程序,旨在为电影爱好者提供个性化的电影推荐服务。该系统通过收集和分析用户的观影历史、评分数据、电影的属性信息(如类型…

2024AAAI SCTNet论文阅读笔记

文章目录 SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation摘要背景创新点方法Conv-Former Block卷积注意力机制前馈网络FFN 语义信息对齐模块主干特征对齐共享解码头对齐 总体架构backbone解码器头 对齐损失 实验SOTA效果对比Cit…

_STM32关于CPU超频的参考_HAL

MCU: STM32F407VET6 官方最高稳定频率:168MHz 工具:STM32CubeMX 本篇仅仅只是提供超频(默认指的是主频)的简单方法,并未涉及STM32超频极限等问题。原理很简单,通过设置锁相环的倍频系数达到不同的频率&am…

python类和对象

一、什么是类和对象 类和对象一般是编程中较早接触到的比较抽象的概念,其实我们只要按照我们现实生活的实例去类比,就很好理解了 概念理解 我们可以把类比做是一个盖房子的图纸,对象比做是根据图纸去创建出来的一栋房子,这样每…

太原理工大学软件设计与体系结构 --javaEE

这个是简答题的内容 选择题的一些老师会给你们题库,一些注意的点我会做出文档在这个网址 项目目录预览 - TYUT复习资料:复习资料 - GitCode 希望大家可以给我一些打赏 什么是Spring的IOC和DI IOC 是一种设计思想,它将对象的创建和对象之间的依赖关系…

CNN Test Data

由于数据量过大,打不开了 搞一组小的吧。收工睡觉 https://download.csdn.net/download/spencer_tseng/90256048

Windows下调试Dify相关组件(2)--后端Api

1.部署依赖的服务(代码最外层的docker目录) 1.1 将middleware.env.example复制,并改名为middleware.env。 1.2 查看docker-compose.middleware.yaml,有5个服务 db:postgres数据库。 redis:redis缓存。 sa…

从预训练的BERT中提取Embedding

文章目录 背景前置准备思路利用Transformer 库实现 背景 假设要执行一项情感分析任务,样本数据如下 可以看到几个句子及其对应的标签,其中1表示正面情绪,0表示负面情绪。我们可以利用给定的数据集训练一个分类器,对句子所表达的…

HarmonyOS鸿蒙开发 弹窗及加载中指示器HUD功能实现

HarmonyOS鸿蒙开发 弹窗及加载中指示器HUD功能实现 最近在学习鸿蒙开发过程中,阅读了官方文档,在之前做flutter时候,经常使用overlay,使用OverlayEntry加入到overlayState来做添加悬浮按钮、提示弹窗、加载中指示器、加载失败的t…

基于华为ENSP的OSPF状态机、工作过程、配置保姆级别详解(2)

本篇技术博文摘要 🌟 基于华为enspOSPF状态机、OSPF工作过程、.OSPF基本配置等保姆级别具体详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法 引言 📘 在这个快速发展的技术时代,与时俱进是每个IT人的必修课。我…

DeepSeek:性能强劲的开源模型

deepseek 全新系列模型 DeepSeek-V3 首个版本上线并同步开源。登录官网 chat.deepseek.com 即可与最新版 V3 模型对话。 性能对齐海外领军闭源模型​ DeepSeek-V3 为自研 MoE 模型,671B 参数,激活 37B,在 14.8T token 上进行了预训练。 论…

Elastic-Job相关

文档参考视频:09_SpringBoot案例演示_哔哩哔哩_bilibili 一、Elastic-Job介绍 Elastic-Job 是一个轻量级、分布式的任务调度框架,旨在解决分布式环境下的定时任务调度问题。 1.1. Elastic-Job 的核心组件 Elastic-Job 是由多个核心组件构成的&#x…

【Linux】文件 文件描述符fd

🌻个人主页:路飞雪吖~ 🌠专栏:Linux 目录 🌻个人主页:路飞雪吖~ 一、C文件接口 🌟写文件 🌠小贴士: 🌠stdin && stdout && stderr Linux下…

Java Spring Boot实现基于URL + IP访问频率限制

点击下载《Java Spring Boot实现基于URL IP访问频率限制(源代码)》 1. 引言 在现代 Web 应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段。为了保护系统资源,防止服务器过载或服务不可用,需要对接口的访问频率进行限制。本文将介绍如…

QML states和transitions的使用

一、介绍 1、states Qml states是指在Qml中定义的一组状态(States),用于管理UI元素的状态转换和属性变化。每个状态都包含一组属性值的集合,并且可以在不同的状态间进行切换。 通过定义不同的状态,可以在不同的应用场…

SpringCloud

1.认识微服务 随着互联网行业的发展,对服务的要求也越来越高,服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢? 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构:将业务的所有功…

DSP+Simulink——点亮LED灯(TMSDSP28379D)超详细

实现功能:DSP28379D-LED灯闪烁 :matlab为2019a :环境建立见之前文章 Matlab2019a安装C2000 Processors超详细过程 matlab官网链接: Getting Started with Embedded Coder Support Package for Texas Instruments C2000 Processors Overview of Creat…

java_将数据存入elasticsearch进行高效搜索

使用技术简介: (1) 使用Nginx实现反向代理,使前端可以调用多个微服务 (2) 使用nacos将多个服务管理关联起来 (3) 将数据存入elasticsearch进行高效搜索 (4) 使用消息队列rabbitmq进行消息的传递 (5) 使用 openfeign 进行多个服务之间的api调用 参…