kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记

问题描述:
通过从 3D 全身照片 (TBP) 中裁剪出单个病变来识别经组织学确诊的皮肤癌病例
数据集描述:
图像+临床文本信息
评价指标:
pAUC,用于保证敏感性高于指定阈值下的AUC

主流方法分析(文本)
基于CatBoost、LGBM 和 XGBoost三者的组合,为每个算法创建了 XX个变体,总共XX个模型,进行集成学习。
CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类别型特征和缺失值的能力,以及整体模型性能,排序学习、目标导向的编码和缺失值处理。
LightGBM基于XGBoost基础上改进,基于Histogram(直方图)的决策树算法,单边梯度采样,互斥特征捆绑等
XGBoost,是基于预排序方法的决策树算法。这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候寻找一个特征上的最好分割点。最后,在找到一个特征的最好分割点后,将数据分裂成左右子节点。
参考超参数

lgbm_params = {'objective':        'binary','verbosity':        -1,'n_estimators':     300,'early_stopping_rounds': 50,'metric': 'custom','boosting_type':    'gbdt','lambda_l1':        0.08758718919397321, 'lambda_l2':        0.0039689175176025465, 'learning_rate':    0.03231007103195577, 'max_depth':        4, 'num_leaves':       128, 'colsample_bytree': 0.8329551585827726, 'colsample_bynode': 0.4025961355653304, 'bagging_fraction': 0.7738954452473223, 'bagging_freq':     4, 'min_data_in_leaf': 85, 'scale_pos_weight': 2.7984184778875543,"device": "gpu"
}
cb_params = {'loss_function':     'Logloss','iterations':        300,'early_stopping_rounds': 50,'verbose':           False,'max_depth':         7, 'learning_rate':     0.06936242010150652, 'scale_pos_weight':  2.6149345838209532, 'l2_leaf_reg':       6.216113851699493,'min_data_in_leaf':  24,'cat_features':      cat_cols,"task_type": "CPU",
}
xgb_params = {'enable_categorical':       True,'tree_method':              'hist','disable_default_eval_metric': 1,'n_estimators':             300,'early_stopping_rounds':    50,'learning_rate':            0.08501257473292347, 'lambda':                   8.879624125465703, 'alpha':                    0.6779926606782505, 'max_depth':                6, 'subsample':                0.6012681388711075, 'colsample_bytree':         0.8437772277074493, 'colsample_bylevel':        0.5476090898823716, 'colsample_bynode':         0.9928601203635129, 'scale_pos_weight':         3.29440313334688,"device":                   "cuda",
}

主流方法分析(图像),深度学习算法提取特征,将图像特征与文本特征一并送入提升树模型

  1. EVA02-small (eva02_small_patch14_336.mim_in22k_ft_in1k) 和EdgeNeXt (edgenext_base.in21k_ft_in1k)
  2. eva02_small,deit3_small,beitv2_base,convnextv2_tiny,swinv2_small, resnext50, convnextv2_nano
  3. swin_tiny,convnextv2_base,convnextv2_large,coatnet_rmlp_1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12230.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL学习笔记(六):Transformations 变换(变换矩阵、坐标系统、GLM库应用)

文章目录 向量变换使用GLM变换(缩放、旋转、位移)将变换矩阵传递给着色器坐标系统与MVP矩阵三维变换绘制3D立方体 & 深度测试(Z-buffer)练习1——更多立方体 现在我们已经知道了如何创建一个物体、着色、加入纹理。但它们都还…

NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram

结论 Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram n-gram VS Transformer 我们可以用一个 图书馆查询 的类比来解释它们的差异: 一、核心差异对比 维度n-gram 模型Transformer工作方式固定窗口的"近视观察员"全局关联的&q…

登录认证(5):过滤器:Filter

统一拦截 上文我们提到(登录认证(4):令牌技术),现在大部分项目都使用JWT令牌来进行会话跟踪,来完成登录功能。有了JWT令牌可以标识用户的登录状态,但是完整的登录逻辑如图所示&…

【R语言】R语言安装包的相关操作

一、管理R语言安装包 1、安装R包 install.packages() 2、查看已安装的R包 installed.packages() 3、更新R包 update.packages() 4、卸载R包 remove.packages() 二、加载R语言安装包 打开R语言时,基础包(base包)会自动被加载到内存中…

Vue指令v-on

目录 一、Vue中的v-on指令是什么?二、v-on指令的简写三、v-on指令的使用 一、Vue中的v-on指令是什么? v-on指令的作用是:为元素绑定事件。 二、v-on指令的简写 “v-on:“指令可以简写为”” 三、v-on指令的使用 1、v-on指令绑…

javaEE-8.JVM(八股文系列)

目录 一.简介 二.JVM中的内存划分 JVM的内存划分图: 堆区:​编辑 栈区:​编辑 程序计数器:​编辑 元数据区:​编辑 经典笔试题: 三,JVM的类加载机制 1.加载: 2.验证: 3.准备: 4.解析: 5.初始化: 双亲委派模型 概念: JVM的类加…

物业管理系统源码提升社区智能化管理效率与用户体验

内容概要 物业管理系统源码是一种针对社区管理需求而设计的软件解决方案,通过先进的智能化技术,使物业管理变得更加高效和人性化。随着城市化进程的加快,社区的管理复杂性不断增加,而这一系统的推出恰好为物业公司提供了极大的便…

读算法简史:从美索不达米亚到人工智能时代05天气预报

1. 天气预报 1.1. 自古以来,生命就与变幻莫测的天气息息相关 1.1.1. 在很多情况下,只要能提前一天得知天气情况,人类就可以避免灭顶之灾 1.1.2. 公元前2000年,准确预测天气是众神的特权 1.2. 大约在公元前650年,巴…

整形的存储形式和浮点型在计算机中的存储形式

在计算机科学的底层世界里,数据存储是基石般的存在。不同数据类型,如整形与浮点型,其存储方式犹如独特的密码,隐藏着计算机高效运行的秘密。理解它们,是深入掌握编程与计算机原理的关键。 一、整形的存储形式 原码、反…

Python网络自动化运维---批量登录设备

文章目录 目录 文章目录 前言 实验准备 一.批量登录 IP 连续的设备 1.1.1 实验代码 1.1.2 代码分段分解 1.1.3 实验结果验证 二.批量登录 IP 不连续的设备 2.2.1 实验代码 2.2.2 代码分段分解 2.2.3 实验结果验证 前言 在生产环境中,我们通常需要登录多个设备…

selenium记录Spiderbuf例题C03

防止自己遗忘,故作此为记录。 鸢尾花数据集(Iris Dataset) 这道题牵扯到JS动态加载。 步骤: (1)进入例题,需要找到按钮规律。 flip_xpath: str r"//li/a[onclickgetIrisData({});]" (2&…

【C++篇】位图与布隆过滤器

目录 一,位图 1.1,位图的概念 1.2,位图的设计与实现 1.5,位图的应用举例 1.4,位图常用应用场景 二,布隆过滤器 2.1,定义: 2.2,布隆过滤器的实现 2.3, 应…

基于SpringBoot的新闻资讯系统的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

Spring Boot 2 快速教程:WebFlux处理流程(五)

WebFlux请求处理流程 下面是spring mvc的请求处理流程 具体步骤: 第一步:发起请求到前端控制器(DispatcherServlet) 第二步:前端控制器请求HandlerMapping查找 Handler (可以根据xml配置、注解进行查找) 匹配条件包括…

C基础寒假练习(2)

一、输出3-100以内的完美数&#xff0c;(完美数&#xff1a;因子和(因子不包含自身)数本身 #include <stdio.h>// 函数声明 int isPerfectNumber(int num);int main() {printf("3-100以内的完美数有:\n");for (int i 3; i < 100; i){if (isPerfectNumber…

react-bn-面试

1.主要内容 工作台待办 实现思路&#xff1a; 1&#xff0c;待办list由后端返回&#xff0c;固定需要的字段有id(查详细)、type(本条待办的类型)&#xff0c;还可能需要时间&#xff0c;状态等 2&#xff0c;一个集中处理待办中转路由页&#xff0c;所有待办都跳转到这个页面…

GRN前沿:利用DigNet从scRNA-seq数据中生成基于扩散的基因调控网络

1.论文原名&#xff1a;Diffusion-based generation of gene regulatory network from scRNA-seq data with DigNet 2.出版时间&#xff1a;2024.12.18 3.doi: 10.1101/gr.279551.124 摘要&#xff1a; 基因调控网络&#xff08;GRN&#xff09;在细胞内基因的身份和功能之间…

AnswerRocket:通过 AI 辅助简化分析

AnswerRocket是一家专注于人工智能驱动数据分析和商业智能的领先企业&#xff0c;其核心产品是一款增强型分析平台&#xff0c;旨在通过自然语言处理&#xff08;NLP&#xff09;、机器学习&#xff08;ML&#xff09;和生成式AI技术&#xff0c;简化复杂数据的分析过程&#x…

小程序设计和开发:如何研究同类型小程序的优点和不足。

一、确定研究目标和范围 明确研究目的 在开始研究同类型小程序之前&#xff0c;首先需要明确研究的目的。是为了改进自己的小程序设计和开发&#xff0c;还是为了了解市场趋势和用户需求&#xff1f;不同的研究目的会影响研究的方法和重点。例如&#xff0c;如果研究目的是为了…

我的AI工具箱Tauri版-ZoomImageSDXL全图超清放大TILE+SDXL

本教程基于自研的AI工具箱Tauri版进行ComfyUI工作流ZoomImageSDXL全图超清放大TILESDXL。 ZoomImageSDXL全图超清放大TILESDXL 借助ControlNet的Tile技术与SDXL大模型&#xff0c;该工具能够在放大图像的同时&#xff0c;精准还原细节和纹理&#xff0c;确保输出效果既清晰锐利…