学习pytorch8 土堆说卷积操作

土堆说卷积操作

    • 官网
    • debug torch版本只有nn 没有nn.functional
    • 代码
    • 执行结果

B站小土堆视频学习笔记

官网

https://pytorch.org/docs/stable/nn.html#convolution-layers

常用torch.nn, nn是对nn.functional的封装,使函数更易用。
在这里插入图片描述
在这里插入图片描述
卷积核从输入图像左上角,先向右遍历行,stride为1 挪一个格位置,向右遍历完,向下一格,再从左向右遍历。
卷积核和输入图像对应位置相乘后结果想加,得到右边的输出结果。
stride
在这里插入图片描述

padding
在这里插入图片描述

debug torch版本只有nn 没有nn.functional

 conda activate pytorchconda install pytorch-cpu torchvision-cpu -c pytorch

在当前环境安装pytorch-cpu后,functional函数就可以调用啦

https://www.saoniuhuo.com/question/detail-2646442.html

代码

import torch
from torch.nn import functional as Finput = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]])kernel = torch.tensor([[1, 2, 1],[0, 1, 0],[2, 1, 0]])input = torch.reshape(input, [1, 1, 5, 5])
kernel = torch.reshape(kernel, [1, 1, 3, 3])
print(input.shape)
print(kernel.shape)
output1 = F.conv2d(input, kernel, stride=1)
print(output1)output2 = F.conv2d(input, kernel, stride=2)
print(output2)
# 默认padding=0
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

执行结果

p14_conv.py
torch.Size([1, 1, 5, 5])
torch.Size([1, 1, 3, 3])
tensor([[[[10, 12, 12],[18, 16, 16],[13,  9,  3]]]])
tensor([[[[10, 12],[13,  3]]]])
tensor([[[[ 1,  3,  4, 10,  8],[ 5, 10, 12, 12,  6],[ 7, 18, 16, 16,  8],[11, 13,  9,  3,  4],[14, 13,  9,  7,  4]]]])Process finished with exit code 0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/123627.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数据分析实战-将dataframe某列的值分成不同区间并计算每个区间的频数(附源码和实现效果)

实现功能 将dataframe某列的值分成不同区间并计算每个区间的频数 实现代码 import pandas as pd# 创建dataframe data {Name:[Tom1, Jack1, Steve1, Ricky1, Tom2, Jack2, Steve2, Ricky2],Score:[78,60,59,42,88,34,69,142]} df pd.DataFrame(data) print(df)# 定义区间和…

【VL tracking】Towards Unified Token Learning for Vision-Language Tracking

不知道什么原因学校认证账号进不去,下载不了最新的PDF 广西师范大学 | 国科大 | 厦大 代码开源 zhihu指路👉【VL tracking】MMTrack阅读 问题 一方面,传统的VL tracking方法需要昂贵的先验知识。例如,一些tracker是专门用于bou…

【产线故障】线上接口请求过慢如何排查?

文章目录 前言一、内存使用过高导致CPU满载案例代码分析思路 二、出现了类似死循环导致cpu负载案例代码分析思路 三、死锁案例代码分析思路 前言 首先线上接口变慢,原因可能有很多,有可能是网络,有可能是慢 SQL,有可能是服务本身…

【Linux】- 一文秒懂shell编程

shell编程 1.1 Shell 是什么1.2 Shell 脚本的执行方式1.3 编写第一个 Shell 脚本2.1 Shell 的变量2.2 shell 变量的定义2.3 设置环境变量3.1 位置参数变量3.2 预定义变量4.1 运算符4.2 条件判断5.1 流程控制5.2 case 语句5.3 for 循环5.4 while 循环5.5 read基本语法6.1函数6.2…

Mysql性能调优——1.深入理解Mysql索引数据结构和算法

本系列所说的Mysql性能调优,主要是针对开发者在实际环境中的sql调优,代码层面上的优化。不涉及到mysql底层代码的调优。 我们知道,一个mysql数据表,数据量小的时候,可能简单的查询耗时不会太久,性能也可以…

供配电技术

最近,在上一门关于供配电技术的课程,虽说与自动化的关系并不是十分大,但对于扩展知识面还是有很大用处的,不至于与其他人交谈此方面的相关知识的时候,一头雾水。

百度智能云千帆大模型平台2.0来了!从大模型到生产力落地的怪兽级平台!!

目录 前言 最佳算力效能为企业降低门槛 最多大模型,最多数据集为企业保驾护航 企业级安全对于企业来说是硬性要求 前言 普通人或许感知不明显,但是对于企业而言,身处AI时代,是否选择投资大模型,是否拥抱人工智能…

AlmaLinux 经济收益增加,红帽 RHEL 源码限制不成威胁

导读红帽在两个月前发布公告表示,将限制对 Red Hat Enterprise Linux (RHEL) 源代码的访问,未来 CentOS Stream 将成为公共 RHEL 相关源代码发布的唯一仓库。对于这一决策,AlmaLinux OS Foundation 主席 Benny Vasquez 则向 SiliconANGLE 表示…

【MyBatis篇】MyBatis框架基础知识笔记

目录 ORM思想(对象关系映射思想) 初识MyBatis 什么是MyBatis呢? JDBC VS MyBatis代码 获取数据库连接对比 对表格查询操作: JDBC弊端 MyBatis,JDBC对比 MyBatis进一步介绍以及本质分析 JDBC编程的劣势&…

五大类注解和方法注解详解

五大类注解为Controller,Service,Repository,Configuration,Component,方法注解为Bean。 需要注意的是:Bean注解必须要在类注解修饰的类内才能正常使用。 一、与配置文件的关系 在spring原生项目中 如果你使用的spri…

基于Hata模型的BPSK调制信号小区覆盖模拟matlab完整程序分享

基于Hata信道模型的BPSK调制信号小区覆盖模拟matlab仿真,对比VoIP, Live Video,FTP/Email 完整程序: clc; clear; close all; warning off; addpath(genpath(pwd)); % Random bits are generated here. bits randi([0, 1], [50,1]); M 2; t 1:1:50; …

Json“牵手”唯品会商品详情数据方法,唯品会商品详情API接口,唯品会API申请指南

唯品会是中国最大的会员制特卖电商平台之一,于2008年创立,唯品会主营业务为互联网在线销售品牌折扣商品,涵盖名品服饰鞋包、美妆、母婴、居家等各大品类2。唯品会采取供应链直采模式,与全球3000多家品牌及供应商合作,直…

TSINGSEE青犀视频AI分析/边缘计算/AI算法·安全帽检测功能——多场景高效运用

安全帽检测算法主要是对人员安全和事故预防的需要。在许多工业领域和施工现场,佩戴安全帽是一种重要的安全措施,可以减少头部受伤的风险。然而,由于工地人员数量众多且繁忙,人工监控难以有效覆盖所有区域,因此旭帆科技…

Ubuntu 升级cuda版本与切换

下载cuda版本 进:CUDA Toolkit 12.2 Downloads | NVIDIA Developer wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.runsudo sh ./cuda_12.2.0_535.54.03_linux.run --toolkit --silent --overrid…

Shell命令操作Linux文件系统

Shell命令操作Linux文件系统 文件夹介绍 文件夹常规命令 文件夹权限控制⭐ 文件类型和权限 修改文件权限 移动、复制、删除文件夹 文件夹介绍 Linux文件系统是计算机操作系统中的一个关键组成部分,它用于管理和组织计算机上的数据和信息。先到根目录&#xf…

并发容器11

一 JDK 提供的并发容器总结 JDK 提供的这些容器大部分在 java.util.concurrent 包中。 ConcurrentHashMap: 线程安全的 HashMap CopyOnWriteArrayList: 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector. ConcurrentLinkedQueue: 高效的并…

音频应用编程

目录 ALSA 概述alsa-lib 简介sound 设备节点alsa-lib 移植编写一个简单地alsa-lib 应用程序一些基本概念打开PCM 设备设置硬件参数读/写数据示例代码之PCM 播放示例代码值PCM 录音 使用异步方式PCM 播放示例-异步方式PCM 录音示例-异步方式 使用poll()函数使用poll I/O 多路复用…

W5500-EVB-PICO主动PING主机IP检测连通性(十)

前言 上一章我们用W5500_EVB_PICO 开发板做UDP组播数据回环测试,那么本章我们进行W5500_EVB_PICO Ping的测试。 什么是PING? Ping (Packet Internet Groper)是一种因特网包探索器,用于测试网络连接量的程序 。Ping是…

phpstudy本地快速搭建网站,并外网访问【无公网IP】

文章目录 使用工具1. 本地搭建web网站1.1 下载phpstudy后解压并安装1.2 打开默认站点,测试1.3 下载静态演示站点1.4 打开站点根目录1.5 复制演示站点到站网根目录1.6 在浏览器中,查看演示效果。 2. 将本地web网站发布到公网2.1 安装cpolar内网穿透2.2 映…

聊聊Kafka的生产者消费者确认机制

一、生产者确认机制 消息从生产者客户端发送至broker服务端topic,需要ack确认。acks与min.insync.replicas是两个配置参数.其中acks是producer的配置参数,min.insync.replicas是Broker端的配置参数,这两个参数对于生产者不丢失数据起到了很大…