e2studio开发RA2E1(5)----GPIO输入检测

e2studio开发RA2E1.5--GPIO输入检测

  • 概述
  • 视频教学
  • 样品申请
  • 硬件准备
  • 参考程序
  • 源码下载
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • GPIO口配置
  • 按键口配置
  • 按键口&Led配置
  • R_IOPORT_PortRead()函数原型
  • R_IOPORT_PinRead()函数原型
  • 代码

概述

本篇文章主要介绍如何使用e2studio对瑞萨单片机进行GPIO输入检测。

最近在瑞萨RA的课程,需要样片的可以加qun申请:925643491。

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1oxPReEEUW/

e2studio开发RA2E1(5)----GPIO输入检测

样品申请

https://www.wjx.top/vm/rCrkUrz.aspx

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为R7FA2E1A72DFL#AA0

在这里插入图片描述

参考程序

https://github.com/CoreMaker-lab/RA2E1

https://gitee.com/CoreMaker/RA2E1

源码下载

https://download.csdn.net/download/xinzuofang/90338098

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA2E1A72DFL#AA0来进行演示。

在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述

需要修改XTAL为12M。

在这里插入图片描述

GPIO口配置

由下图我们可以得知,板子上有4个LED灯,同时需要给高电平才可以点亮。

在这里插入图片描述

在e2studio中可以直接设置P913、P914为输出口。

在这里插入图片描述

按键口配置

由下图我们可以得知,按键在P000和P001管脚,并且有一个上拉。

在这里插入图片描述

在e2studio中可以直接设置P000和P001为输入口。

在这里插入图片描述

按键口&Led配置

案例:当按下按键K1,P913亮,当按下按键K2,P914亮,松开按键对应LED灭。

R_IOPORT_PortRead()函数原型

该函数用于读取IO端口的值。指定的端口将被读取,所有引脚的电平将被返回。返回值中的每一位对应于端口上的一个引脚,例如,位7对应引脚7,位6对应引脚6,以此类推。

在这里插入图片描述

故可以用R_IOPORT_PortRead()函数进行读取IO口电平状态,该函数是把一个PORT口的16个端口一起读取出来。

        ioport_size_t p_port_value_port_0;R_IOPORT_PortRead(&g_ioport_ctrl, BSP_IO_PORT_00, &p_port_value_port_0);if(p_port_value_port_0 &0b1)R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_13, BSP_IO_LEVEL_LOW);elseR_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_13, BSP_IO_LEVEL_HIGH);

R_IOPORT_PinRead()函数原型

在这里插入图片描述

故可以用R_IOPORT_PinRead()函数进行读取IO口电平状态,该函数只能读取一个端口的电平。

        bsp_io_level_t p_port_value_pin_001;R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_01, &p_port_value_pin_001);if(p_port_value_pin_001)R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_14, BSP_IO_LEVEL_LOW);elseR_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_14, BSP_IO_LEVEL_HIGH);

代码

在hal_entry()中添加如下。

    while(1){ioport_size_t p_port_value_port_0;R_IOPORT_PortRead(&g_ioport_ctrl, BSP_IO_PORT_00, &p_port_value_port_0);if(p_port_value_port_0 &0b1)R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_13, BSP_IO_LEVEL_LOW);elseR_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_13, BSP_IO_LEVEL_HIGH);bsp_io_level_t p_port_value_pin_001;R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_01, &p_port_value_pin_001);if(p_port_value_pin_001)R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_14, BSP_IO_LEVEL_LOW);elseR_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_09_PIN_14, BSP_IO_LEVEL_HIGH);}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12478.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[吾爱出品]CursorWorkshop V6.33 专业鼠标光标制作工具-简体中文汉化绿色版

CursorWorkshop V6.33 专业鼠标光标制作工具 链接:https://pan.xunlei.com/s/VOIFeq5DFB9FS56Al_mT2EfdA1?pwd7ij4# 产品概述 Axialis CursorWorkshop 是一个专业光标创作工具它在 Windows 下运行,让您轻松创建高质量的静态和动态光标适用于 Windows …

STM32单片机学习记录(2.2)

一、STM32 13.1 - PWR简介 1. PWR(Power Control)电源控制 (1)PWR负责管理STM32内部的电源供电部分,可以实现可编程电压监测器和低功耗模式的功能; (2)可编程电压监测器(…

【物联网】ARM核常用指令(详解):数据传送、计算、位运算、比较、跳转、内存访问、CPSR/SPSR

文章目录 指令格式(重点)1. 立即数2. 寄存器位移 一、数据传送指令1. MOV指令2. MVN指令3. LDR指令 二、数据计算指令1. ADD指令1. SUB指令1. MUL指令 三、位运算指令1. AND指令2. ORR指令3. EOR指令4. BIC指令 四、比较指令五、跳转指令1. B/BL指令2. l…

Nacos 的介绍和使用

1. Nacos 的介绍和安装 与 Eureka 一样,Nacos 也提供服务注册和服务发现的功能,Nacos 还支持更多元数据的管理, 同时具备配置管理功能,功能更丰富。 1.1. windows 下的安装和启动方式 下载地址:Release 2.2.3 (May …

【零基础到精通】小白如何自学网络安全

小白人群想学网安但是不知道从哪入手?一篇文章告诉你如何在4个月内吃透网安课程,掌握网安技术 一、基础阶段 1.了解网安相关基础知识 了解中华人民共和国网络安全法、熟知网络安全的相关概念:包括信息安全、风险管理、网络攻防原理、认证与…

架构规划之任务边界划分过程中承接分配

架构师在边界划分的过程中需要做什么事情呢?接下来,我们会讨论一些关于任务分配的 基础假设,以及由这些基础假设而带来的决策路径。 所谓任务边界划分,就是判定某个任务在多个承接方中,应该归属到哪个承接方的过程。…

如可安装部署haproxy+keeyalived高可用集群

第一步,环境准备 服务 IP 描述 Keepalived vip Haproxy 负载均衡 主服务器 Rip:192..168.244.101 Vip:192.168.244.100 Keepalive主节点 Keepalive作为高可用 Haproxy作为4 或7层负载均衡 Keepalived vip Haproxy 负载均衡 备用服务…

MySQL常用数据类型和表的操作

文章目录 (一)常用数据类型1.数值类2.字符串类型3.二进制类型4.日期类型 (二)表的操作1查看指定库中所有表2.创建表3.查看表结构和查看表的创建语句4.修改表5.删除表 (三)总代码 (一)常用数据类型 1.数值类 BIT([M]) 大小:bit M表示每个数的位数,取值范围为1~64,若…

DeepSeekMoE:迈向混合专家语言模型的终极专业化

一、结论写在前面 论文提出了MoE语言模型的DeepSeekMoE架构,目的是实现终极的专家专业化(expert specialization)。通过细粒度的专家分割和共享专家隔离,DeepSeekMoE相比主流的MoE架构实现了显著更高的专家专业化和性能。从较小的2B参数规模开始&#x…

寻迹传感器模块使用说明

产品用途: 1、电度表脉冲数据采样 2、传真机碎纸机纸张检测 3、障碍检测 4、黑白线检测 产品介绍: 1、采用 TCRT5000 红外反射传感器 2、检测反射距离:1mm~25mm 适用 3、比较器输出,信号干净,波形好,驱…

java项目验证码登录

1.依赖 导入hutool工具包用于创建验证码 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.5.2</version></dependency> 2.测试 生成一个验证码图片&#xff08;生成的图片浏览器可…

Baklib探讨如何通过内容中台提升组织敏捷性与市场竞争力

内容概要 在数字化转型的浪潮中&#xff0c;内容中台已经成为企业提升市场响应速度和竞争力的关键所在。内容中台不仅是信息处理的集结地&#xff0c;更是促进资源高效整合和灵活应用的重要平台。通过构建一个高效的内容中台架构&#xff0c;企业能够更好地应对不断变化的市场…

Java基础——分层解耦——IOC和DI入门

目录 三层架构 Controller Service Dao ​编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理&#xff1f; 容器怎样才能提供依赖的bean对象呢&#xff1f; 三层架构 Controller 控制…

Spring中@Conditional注解详解:条件装配的终极指南

一、为什么要用条件装配&#xff1f; 在实际开发中&#xff0c;我们经常需要根据不同的运行环境、配置参数或依赖情况动态决定是否注册某个Bean。例如&#xff1a; 开发环境使用内存数据库&#xff0c;生产环境连接真实数据库 当存在某个类时才启用特定功能 根据配置文件开关…

Redis代金卷(优惠卷)秒杀案例-多应用版

Redis代金卷(优惠卷)秒杀案例-单应用版-CSDN博客 上面这种方案,在多应用时候会出现问题,原因是你通过用户ID加锁 但是在多应用情况下,会出现两个应用的用户都有机会进去 让多个JVM使用同一把锁 这样就需要使用分布式锁 每个JVM都会有一个锁监视器,多个JVM就会有多个锁监视器…

ros 发布Topic

1、确定话题名称和消息类型 自定义话题名称&#xff0c;消息类型根据发送消息需要从std_msgs中查找确定 2、在main函数中通过NodeHander发布话题 // 创建一个NodeHandle对象&#xff0c;用于与ROS系统进行交互ros::NodeHandle nh;// 创建一个Publisher对象&#xff0c;用于发…

86.(2)攻防世界 WEB PHP2

之前做过&#xff0c;回顾一遍&#xff0c;详解见下面这篇博客 29.攻防世界PHP2-CSDN博客 既然是代码审计题目&#xff0c;打开后又不显示代码&#xff0c;肯定在文件里 <?php // 首先检查通过 GET 请求传递的名为 "id" 的参数值是否严格等于字符串 "admi…

毕业设计:基于深度学习的高压线周边障碍物自动识别与监测系统

目录 前言 课题背景和意义 实现技术思路 一、算法理论基础 1.1 卷积神经网络 1.2 目标检测算法 1.3 注意力机制 二、 数据集 2.1 数据采集 2.2 数据标注 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 3.2 结果分析 最后 前言 &#x1f4c5;大四是整个大学…

AI取代人类?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

刷题记录 动态规划-7: 63. 不同路径 II

题目&#xff1a;63. 不同路径 II 难度&#xff1a;中等 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角&#xff08;即 grid[0][0]&#xff09;。机器人尝试移动到 右下角&#xff08;即 grid[m - 1][n - 1]&#xff09;。机器人每次只能向下或者向右移动一步。…