C++学习笔记--函数重载(2)

文章目录

    • 1.3、Function Templates Handling
      • 1.3.1、Template Argument Deduction
      • 1.3.2、Template Argument Substitution
    • 1.4、Overload Resolution
      • 1.4.1、Candidate functions
      • 1.4.2、Viable functions
      • 1.4.3、Tiebreakers
    • 1.5、走一遍完整的流程
    • 1.6、Name Mangling
    • 1.7、总结

1.3、Function Templates Handling

Name Lookup 查找的名称若是包含函数模板,那么下一步就需要将这些函数模板实例化。
模板实例化有两个步骤,第一个步骤是 Template Argument Deduction,对模板参数进行推导;第二个步骤是 Template Argument Substitution,使用推导出来的类型对模板参数进行替换。
下面两节分别介绍模板参数推导与替换的细节。

1.3.1、Template Argument Deduction

模板参数本身是抽象的类型,并不真正存在,因此需要根据调用的实参进行推导,从而将类型具体化。
TAD 就描述了如何进行推导,规则是怎样的。
先来看一个简单的例子,感受一下基本规则。

template <class T, class U = double>
void f(T t = 0, U u = 0) {
}int main() {f(1, 'c'); // f<int, char>(1, 'c');f(1); // f<int, double>(1, 0)f(); // error: T cannot be duducedf<int>(); // f<int, double>(0, 0)f<int, char>(); // f<int, char>(0, 0)
}

调用的实参是什么类型,模板参数就自动推导为所调用的类型。如果模板参数具有默认实参,那么可以从其推导,也可以显式指定模板参数,但若没有任何参数,则不具备推导上下文,推导失败。
这里存在令许多人都比较迷惑的一点,有些时候推导的参数并不与调用实参相同。
比如:

template <class T>
void f(T t) {}int main() {const int i = 1;f(i); // T deduced as int, f<int>(int)
}

这里实参类型是 const int,但最后推导的却是 int。
这是因为,推导之时,所有的 top-level 修饰符都会被忽略,此处的 const 为 top-level const,于是 const 被丢弃。本质上,其实是因为传递过去的参数变量实际上是新创建的拷贝变量,原有的修饰符不应该影响拷贝之后的变量。
那么,此时如何让编译器推导出你想要的类型呢?
第一种办法,显示指定模板参数类型。

f<const int>(i); // OK, f<const int>(const int)

第二种办法,将模板参数声明改为引用或指针类型。

template <class T>
void f(T& t) { }
f(i); // OK, f<const int>(const int&)

为什么改为引用或指针就可以推导出带 const 的类型呢?
这是因为此时变量不再是拷贝的,它们访问的依旧是实参的内存区域,如果忽略掉 const,它们将能够修改 const 变量,这会导致语义错误。
因此,如果你写出这样的代码,推导将会出错:

template <class T>
void f(T t1, T* t2) { }int main() {const int i = 1;f(i, &i); // Error, T deduced as both int and const int
}

因为根据第一个实参,T 被推导为 int,而根据第二个实参,T 又被推导为 const int,于是编译失败。
若你显示指定参数,那么将可以消除此错误,代码如下:

template <class T>
void f(T t1, T* t2) { }int main() {const int i = 1;f<const int>(i, &i); // OK, T has const int type
}

此时,T 的类型只为 const int,冲突消除,于是编译成功。
下面介绍可变参数模板的推导规则。
看如下例子:

template <class T, class... Ts>
void f(T, Ts...) {
}template <class T, class... Ts>
void g(Ts..., T) {
}int main() {f(1, 'c', .0); // f<int, char, double>(int, char, double)//g(1, 'c', .0); // error, Ts is not deduced
}

此处规则为:参数包必须放到参数定义列表的最末尾,TAD 才会进行推导。
但若是参数包作为类模板参数出现,则不必遵循此顺序也可以正常推导。

template <class...>
struct Tuple {};template <class T, class... Ts>
void g(Tuple<Ts...>, T) {
}g(Tuple<int>{}, .0); // OK, g<int, double>(Tuple<int>, double)

如果函数参数是一个派生类,其继承自类模板,类模板又采用递归继承,则推导实参为其直接基类的模板参数。示例如下:

template <class...> struct X;
template <> struct X<> {};
template <class T, class... Ts>
struct X<T, Ts...> : X<Ts...> {};
struct D : X<int> {};template <class... Ts>
int f(const X<Ts...>&) {return {};
}int main() {int x = f(D()); // deduced as f<int>, not f<>
}

这里,最终推导出来的类型为 f,而非 f<>。
下面介绍 forwarding reference 的推导规则。
对于 forwarding reference,如果实参为左值,则模板参数推导为左值引用。看一个不错的例子:

template <class T> int f(T&& t);
template <class T> int g(const T&&);int main() {int i = 1;//int n1 = f(i); // #1, f<int&>(int&)//int n2 = f(0); // #2, f<int>(int&&);int n3 = g(i); // #3, g<int>(const int&&)// error: bind an rvalue reference to an lvalue
}

此处,f() 的参数为 forwarding reference,g() 的参数为右值引用。
因此,当实参为左值时,f() 的模板参数被推导为 int&,g() 的模板参数则被推导为 int。而左值无法绑定到右值,于是编译出错。
再来看另一个例子:

template <class T>
struct A {template <class U>A(T&& t, U&& u, int*); // #1A(T&&, int*); // #2
};template <class T> A(T&&, int*) -> A<T>; // #3

对于 #1,U&& 为 forwarding reference,而 T&& 并不是,因为它不是函数模板参数。
于是,当使用 #1 初始化对象时,若第一个实参为左值,则 T&& 被推导为右值引用。由于左值无法绑定到右值,遂编译出错。但是第二个参数可以为左值,U 会被推导为左值引用,次再施加引用折叠,最终依旧为左值引用,可以接收左值实参。
若要使类模板参数也变为 forwarding reference,可以使用 CTAD,如 #3 所示。此时,T&& 为forwarding reference,第一个实参为左值时,就可以正常触发引用折叠。

1.3.2、Template Argument Substitution

TAD 告诉编译器如何推导模板参数类型,紧随其后的就是使用推导出来的类型替换模板参数,将模板实例化。
这两个步骤密不可分,故在上节当中其实已经涉及了部分本节内容,这里进一步扩展。
这里只讲三个重点。
第一点,模板参数替换存在失败的可能性。
模板替换并不总是会成功的,比如:

struct A { typedef int B; };template <class T> void g(typename T::B*) // #1
template <class T> void g(T); // #2g<int>(0); // calls #2

Name Lookup 查找到了 #1 和 #2 的两个名称,然后对它们进行模板参数替换。然而,对于 #1 的参数替换并不能成功,因为 int 不存在成员类型 B,此时模板参数替换失败。
但是编译器并不会进行报错,只是将其从重载集中移除。这个特性就是广为熟知的SFINAE(Substitution Failure Is Not An Error),后来大家发现该特性可以进一步利用起来,为模板施加约束。
比如根据该原理可以实现一个 enable_if 工具,用来约束模板。

namespace mylib {template <bool, typename = void>struct enable_if {};template <typename T>struct enable_if<true, T> {using type = T;};template <bool C, typename T = void>using enable_if_t = typename enable_if<C, T>::type;
} // namespace mylibtemplate <typename T, mylib::enable_if_t<std::same_as<T, double>, bool> = true>
void f() {std::cout << "A\n";
}template <typename T, mylib::enable_if_t<std::same_as<T, int>, bool> = true>
void f() {std::cout << "int\n";
}int main() {f<double>(); // calls #1f<int>(); // calls #2
}

enable_if 早已加入了标准,这个的工具的原理就是利用模板替换失败的特性,将不符合条件的函数从重载集移除,从而实现正确的逻辑分派。
SFINAE 并非是专门针对类型约束而创造出来的,使用起来比较复杂,并不直观,已被 C++20的 Concepts 取代。
第二点,关于 trailing return type 与 normal return type 的本质区别。
这二者的区别本质上就是 Name Lookup 的区别:normal return type 是按照从左到右的词法顺序进行查找并替换的,而 trailing return type 因为存在占位符,打乱了常规的词法顺序,这使得它们存在一些细微的差异。
比如一个简单的例子:

namespace N {using X = int;X f();
}N::X N::f(); // normal return type
auto N::f() -> X; // trailing return type

根据前面讲述的 Qualified Name Lookup 规则,normal return type 的返回值必须使用 N::X,否则将在全局查找。而 trailing return type 由于词法顺序不同,可以省略这个命名空间。
当然 trailing return type 也并非总是比 normal return type 使用起来更好,看如下例子:

template <class T> struct A { using X = typename T::X; };
// normal return type
template <class T> typename T::X f(typename A<T>::X);
template <class T> void f(...);// trailing return type
template <class T> auto g(typename A<T>::X) -> typename T::X;
template <class T> void g(...);int main() {f<int>(0); // #1 OKg<int>(0); // #2 Error
}

通常来说,这两种返回类型只是形式上的差异,是可以等价使用的,但此处却有着细微而本质的区别。
#1 都能成功调用,为什么改了个返回形式,#2 就编译出错了?
这是因为:
在模板参数替换的时候,normal return type 遵循从左向右的词法顺序,当它尝试替换 T::X,发现实参类型 int 并没有成员 X,于是依据 SFINAE,该名称被舍弃。然后,编译器发现通用版本的名称可以成功替换,于是编译成功。
而 #2 在模板参数替换的时候,首先跳过 auto 占位符,开始替换函数参数。当它尝试使用 int 替换 A::X 的时候,发现无法替换。但是 A::X 并不会触发 SFINAE,而是产生 hard error,于是编译失败。
简单来说,此处,normal return type 在触发 hard error 之前就触发了 SFINAE,所以可以成功编译。
第三点,forwarding reference 的模板参数替换要点。
看一个例子:

template <class T>
struct S {static void g(T&& t) {}static void g(const T& t) {}
};template <class T> void f(T&& t) {}
template <class T> void f(const T& t) {}int main() {int i = 1;f<int&>(i); // #1 OKS<int&>::g(i); // #2 Error
}

为什么 #1 可以通过编译,而 #2 却不可以呢?
首先来分析 #2,编译失败其实显而亦见。
由于调用显式指定了模板参数,所以其实并没有参数推导,int& 用于替换模板参数。对于 T&&,替换为 int&&&,1 折叠后变为 int&;对于 const T&,替换为 const (int&)&,等价于 int& const&,而C++ 不支持 top-level reference,int& const 声明本身就是非法的,所以 const 被抛弃,剩下 int&&,折叠为 int&。
于是重复定义,编译错误。
而对于 #1,它包含两个函数模板。若是同时替换,那么它们自然也会编译失败。但是,根据 4.3将要介绍的规则:如果都是函数模板,那么更特殊的函数模板胜出。const T& 比 T&& 更加特殊,因此 f(T&&) 最终被移除,只存在 f(const T&) 替换之后的函数,没有错误也是理所当然。

1.4、Overload Resolution

经过 Name Lookup 和 Template Handling 两个阶段,编译器搜索到了所有相关重载函数名称,这些函数就称为 candidate functions(候选函数)。
前文提到过,Name Lookup 仅仅只是进行名称查找,并不会检查这些函数的有效性。因此,candidate functions 只是「一级筛选」的结果。
重载决议,就是要在一级筛选的结果之上,选择出最佳的那个匹配函数。
比如:参数个数是否匹配?实参和形参的类型是否相同?类型是否可以转换?这些都属于筛选准则。
因此,这一步也可以称之为「二级筛选」。根据筛选准则,剔除掉无效函数,剩下的结果就称为viable functions(可行函数)。
存在 viable functions,就表示已经找到可以调用的声明了。但是,这个函数可能存在多个可用版本,此时,就需要进行「终极筛选」,选出最佳的匹配函数,即 best viable function。终极筛选在标准中也称为 Tiebreakers(决胜局)。
终极筛选之后,如果只会留下一个函数,这个函数就是最终被调用的函数,重载决议成功;否则的话重载决议失败,程序错误。
接下来,将从一级筛选开始,以一个完整的例子,为大家串起整个流程,顺便加深对前面各节内容的理解。

1.4.1、Candidate functions

一级筛选的结果是由 Name Lookup 查找出来的,包含成员和非成员函数。
对于成员函数,它的第一个参数是一个额外的隐式对象参数,一般来说就是 this 指针。
对于静态成员函数,大家都知道它没有 this 指针,然而事实上它也存在一个额外的隐式对象参数。究其原因,就是为了重载决议可以正常运行。
可以看如下例子来进行理解。

struct S {void f(long) {std::cout << "member version\n";}static void f(int) {std::cout << "static member version\n";}
};
int main() {S s;s.f(1); // calls static member version
}

此时,这两个成员函数实际上为:

f(S&, long); // member version
f(implicit object parameter, int); // static member version

如果静态成员函数没有这个额外的隐式对象,那么其一,将可以定义一个参数完全相同的非静态成员;其二,重载决议将无法选择最佳的那个匹配函数(此处 long 需要转换,不是最佳匹配函数)。
静态成员的这个隐式对象参数被定义为可以匹配任何参数,仅仅用于在重载决议阶段保证操作的一致性。
对于非成员函数,则可以直接通过 Unqualified Name Lookup 和 Qualified Name Lookup 找到。同时,模板实例化后也会产生成员或非成员函数,除了有些因为模板替换失败被移除,剩下的名称共同组成了 candidate functions。

1.4.2、Viable functions

二级筛选要在 candidate functions 的基础上,通过一些筛选准则来剔除不符合要求的函数,留下的就是 viable functions。
筛选准则主要看两个方面,一个是看参数匹配程度,另一个是看约束满足程度。
约束满足就是看是否满足 Concepts,这是 C++20 之后新增的一项检查。
具体的检查流程如下所述。
第一步,看参数个数是否匹配。
假设实参个数为 N,形参个数为 M,则存在三种比较情况。
如果 N 等于 M,这种属于个数完全匹配,此类函数将被留下。
如果 N 小于 M,此时就需要看 candidate functions 是否存在默认参数,如果不存在,此类函数被淘汰。
如果 N 大于 M,此时就需要看 candidate functions 是否存在可变参数,如果不存在,此类函数被淘汰。
第二步,是否满足约束。
第一轮淘汰过后,剩下的函数如果存在 Concepts 约束,这些约束应该被满足。如果不满足,此类函数被淘汰。
第三步,看参数是否匹配。
实参类型可能和 candidate functions 完全匹配,也可能不完全匹配,此时这些参数需要存在隐式转换序列。可以是标准转换,也可以是用户自定义转换,也可以是省略操作符转换。
这三步过后,留下的函数就称为 viable functions,它们都有望成为最佳匹配函数。

1.4.3、Tiebreakers

终极筛选也称为决胜局,重载决议的最后一步,将进行更加严格的匹配。
第一,它会看参数的匹配程度。
如前所述,实参类型与 viable functions 可能完全匹配,也可能需要转换,此时就存在更优的匹配选项。
C++ 的类型转换有三种形式,标准转换、自定义转换和省略操作符转换。
标准转换比自定义转换更好,自定义转换比省略操作符转换更好。
对于标准转换,可以看下表。
在这里插入图片描述
它们的匹配优先级也是自上往下的,即 Exact Match 比 Promotion 更好,Promotion 比 Conversion更好,可以理解为完全匹配、次级匹配和低级匹配。
看一个简单的例子:

void f(int);
void f(char);
int main() {f(1); // f(int) wins
}

此时,viable functions 就有两个。而实参类型为 int,f(int) 不需要转换,而 f(char) 需要将 int 转换为 char,因此前者胜出。
如果实参类型为 double,由于 double 转换为 int 和 char 属于相同等级,因此谁也不比谁好,产生 ambiguous。
再来看一个例子:

void f(const int*, short);
void f(int*, int);int main() {int i;short s = 0;f(&i, s); // #1 Error, ambiguousf(&i, 1L); // #2 OK, f(int*, int) winsf(&i, 'c'); // #3 OK, f(int*, int) wins
}

这里存在两个 viable functions,存在一场决胜局。
#1 处调用,第一个实参类型为 int,第二个实参类型为 short。对于前者来说,f(int, int) 是更好的选择,而对于后者来说,f(const int*, short) 才是更好的选择。此时将难分胜负,因此产生 ambiguous。
#2 处调用,第二个实参类型为 long,打成平局,但 f(int*, int) 在第一个实参匹配中胜出,因此最终被调用。
#3 处调用,第二个实参类型为 char,char 转换为 int 比转换为 short 更好,因此 f(int*, int) 依旧胜出。
对于派生类,则子类向直接基类转换是更好的选择。

struct A {};
struct B : A {};
struct C : B {};void f(A*) {std::cout << "A*";
}
void f(B*) {std::cout << "B*";
}int main() {C* pc;f(pc); // f(B*) wins
}

这里,C 向 B 转换,比向 A 转换更好,所以 f(B*) 胜出。
最后再来看一个例子,包含三种形式的转换。

struct A {operator int();
};void f(A) {std::cout << "standard conversion wins\n";
}void f(int) {std::cout << "user defined conversion wins\n";
}void f(...) {std::cout << "ellipsis conversion wins\n";
}int main() {A a;f(a);
}

最终匹配的优先级是从上往下的,标准转换是最优选择,自定义转换次之,省略操作符转换最差。
第二,如果同时出现模板函数和非模板函数,则非模板函数胜出。
例子如下:

void f(int) {std::cout << "f(int) wins\n";
}template <class T>
void f(T) {std::cout << "function templates wins\n";
}int main() {f(1); // calls f(int)
}

但若是非模板函数还需要参数转换,那么模板函数将胜出,因为模板函数可以完全匹配。
第三,如果都是函数模板,那么更特殊的模板函数胜出。
什么是更特殊的函数模板?其实指的就是更加具体的函数模板。越抽象的模板参数越通用,越具体的越特殊。举个例子,语言、汉语和普通话,语言可以表示汉语,汉语可以表示普通话,因此语言比汉语更抽象,汉语比普通话更抽象,普通话比汉语更特殊,汉语又比语言更特殊。
越抽象越通用,越具体越精确,越精确就越可能是实际的调用需求,因此更特殊的函数模板胜出。
比如在 3.2 节第三点提到的例子,const T& 为何比 T&& 更特殊呢?这是因为,若形参类型为T,实参类型为 const U,则 T 可以推导为 const U,前者就可以表示后者。若是反过来,形参类型为const T,实参类型为 U,此时就无法推导。因此 const T& 要更加特殊。
第四,如果都函数都带有约束,那么满足更多约束的获胜。
例子如下:

template<typename T> concept C1 = requires(T t) { --t; };
template<typename T> concept C2 = C1<T> && requires(T t) { *t; };template<C1 T> void f(T); // #1
template<C2 T> void f(T); // #2
template<class T> void g(T); // #3
template<C1 T> void g(T); // #4int main() {f(0); // selects #1f((int*)0); // selects #2g(true); // selects #3 because C1<bool> is not satisfiedg(0); // selects #4
}

第五,如果一个是模板构造函数,一个是非模板构造函数,那么非模板版本获胜。
例子如下:

template <class T>
struct S {S(T, T, int); // #1template <class U> S(T, U, int); // #2
};int main() {// selects #1, generated from non-template constructorS s(1, 2, 3);
}

究其原因,还是非模板构造函数更加特殊。
以上所列的规则都是比较常用的规则,更多规则大家可以参考 cppreference。
通过这些规则,就可以找出最佳匹配的那个函数。如果最后只剩下一个 viable function,那么它就是 best viable function。如果依旧存在多个函数,那么 ambiguous。
大家也许还不是特别清楚上述流程,那么接下来,我将以一个完整的例子来串起整个流程。

1.5、走一遍完整的流程

一个完整的示例,代码如下:

namespace N {struct Base {};struct Derived : Base { void foo(Base* s, char); }; // #1void foo(Base* s, char); // #2void foo(Derived* s, int, bool = true); // #3void foo(Derived* s, short); // #4
}struct S {N::Derived* d;S(N::Derived* deri) : d{deri} {}operator N::Derived*() const { return d; }
};void foo(S); // #5
template <class T> void foo(T* t, int c); // #6
void foo(...); // #7int main() {N::Derived d;foo(&d, 'c'); // which one will be matched?
}

最终哪个函数能够胜出,让我们来逐步分析。
第一步,编译器会进行 Name Lookup,查找名称。如下图。
在这里插入图片描述
可以看到,代码中一共有七个重载函数,但是只会被查找到六个。因为 foo(&d, ’c’) 调用时没有添加任何作用域限定符,所以编译器不会使用 Qualified Name Lookup 进行查找。
在查找到的六个名称当中,其中有三个是通过 ADL 查找到的,还有三个是通过 Usual Unqualified Lookup 查找到的。
第二步,编译器发现其中包含函数模板,于是进行 Template Handling。如图。
首先,编译器根据调用实参,通过 Template Argument Deduction 推导出实参类型,实参类型如上图 A1 和 A2 所示。
接着,编译器分析函数模板中包含的模板参数,其中 P1 为模板参数。于是,需要进行 Template Argument Substitution,将 P1 替换为实参类型,T 被替换为 N::Derived。
如果模板替换失败,根据 SFINAE,这些函数模板将被移除。
最后,替换完成的函数就和其他的函数一样,它们共同构成了 candidate functions,一级筛选到
此结束。如图。
第三步,编译器正式进入重载决议阶段,比较 candidate functions,选择最佳匹配函数。
在这里插入图片描述
在这里插入图片描述
首先,进行二级筛选,筛选掉明显不符合的候选者。
调用参数为 2 个,而第 4 个候选者只有 1 个参数,被踢出局;第 2 个候选者具有 3 个参数,但是它的第三个参数设有缺省值,因此依旧被留下。
此外,这些候选函数也没有任何约束,因此在这一局只剔除了一个函数,剩下的函数就称为viable functions。如图。
viable functions 之所以称为可行函数,就是因为它们其实都可以作为最终的调用函数,只是谁更好而已。
其次,进行终级筛选,即决胜局。在此阶段,需要比较参数的匹配程序。
对于派生类,完全匹配比直接基类好,直接基类比间接基类好,因此第 1 个候选者被踢出局。
第 6 个候选者为省略操作符,它将永远是最后才会被考虑的对象,也是最差的匹配对象。于是,2、3、5 进行决战。
它们的第一个参数都是完全匹配,因此看第二个参数。char 转换为 int 比 short 更好,因此第 3个候选者被踢出局。
剩下第 2、5 个候选者,第 2 个候选者虽然有三个参数,但因为有缺省值,所以并不影响,也不会被作为决胜因素,所以第 5 个候选者暂时还无法取胜。
在这里插入图片描述
然后,编译器发现第 2 个候选者为非模板函数,第 5 个候选者为模板函数。模板函数和非模板函数同时出现时,非模板函数胜出,于是第 5 个候选者被踢出局。
最后,只留下了第 2 个候选者,它成为了 best viable function,胜利者。如图:
在这里插入图片描述
但是,大家可别以为竞选出胜利者就一定可以调用成功。事实上,它们只针对的是声明,如果函数没有定义,依旧会编译失败。

1.6、Name Mangling

重载函数的名称实际上是通过 Name Mangling 生成的新名称,大家如果去看编译后的汇编代码就能够看到这些名称。
像是 Compiler Explorer,它实际上是为了让你看着方便,显示的是优化后的名称,去掉勾选Demangle identifiers 就能够看到实际函数名称。如图。
那么接下来,就来介绍一下 Name Mangling 的实际手法。标准并没有规定具体实现方式,因此编译器的实际可能不尽相同,下面以 gcc 为例进行分析。
下面是使用 gcc 编译过后的一个例子。如图。
如图所示,编译器为每个重载函数都生成一个新名称,新名称是绝对唯一的。
基本的规则如下图所示。如图。
在这里插入图片描述
在这里插入图片描述
除了基本规则,还有很多比较复杂的规则,这里再举几个常见的名称。

namespace myNS {struct myClass {// mangles as _ZN4myNS7myClass6myFuncEvvoid myFunc() {}};// mangles as _ZN4myNS3fooENS_7myClassEvoid foo(myClass) {}
}template <class T>
void foo(T, int) {}// mangles as _Z3fooIfEvT_i
template void foo(float, int);

规则不难理解,大家可以自己找下规律。其中,I/E 中间的是模板参数,T_ 表示第 1 个模板参数。
在这里插入图片描述
由于 C 语言没有重载函数,所以它也没有 Mangling 操作。如果你使用混合编译,即某些文件使用 C 编译,某些文件使用 C++ 编译,就会产生链接错误。
举个例子,有如下代码:

int myFunc(int a, int b) {return a + b;
}// main.cpp
#include <iostream>
int myFunc(int a, int b);int main() {std::cout << "The answer is " << myFunc(41, 1);
}

使用 C++ 编译并链接,结果如下图。如图。
编译器在编译 main.cpp 时,发现其中存在一个未解析的引用 int myFunc(int a, int b);,于是在链接文件 lib.cpp 中找到了该定义。之所以能够找到该定义,是因为这两个文件都是使用 C++ 编译的,编译时 main.cpp 中的声明经过 Name Mangling 变为 _Z6myFuncii,实际查找的并不是 myFunc 这个名称。而 lib.cpp 中的名称也经过了 Name Mangling,因此能够链接成功。
但是,如果其中一个文件使用 C 进行编译,另一个使用 C++ 进行编译,链接时就会出现问题。如图。
由于 main.cpp 是用 C++ 编译的,因此实际查找的名称为 _Z6myFuncii。而 lib.cpp 是用 C 编译的,并没有经过 Name Mangling,它的名称依旧为 myFunc,因此出现未定义的引用错误。
常用解法是使用一个 extern 关键字,告诉编译器这个函数来自 C,不要进行 Name Mangling。

extern "C" int myFunc(int a, int b);

在这里插入图片描述
在这里插入图片描述

int main() {std::cout << "The answer is " << myFunc(41, 1);
}

如此一来,就可以解决这个问题。如图。
通常来说,可以使用预处理条件语句,分别提供 C 和 C++ 版本的代码,这样使用任何方式就都可以编译成功。
在这里插入图片描述

1.7、总结

在这里插入图片描述
未完待续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/124868.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Jsmooth打包JavaFx程序为EXE文件

配置IDEA 第一步&#xff1a; 第二步&#xff1a; MANIFEST.MF的文件路径&#xff0c;必须在resources文件夹中&#xff0c;如果没有&#xff0c;就创建一个。 第三步&#xff1a;配置项目所需jar包的相对路径 最后&#xff1a; 点击确定后&#xff0c;编译Jar 配置Jsmooth …

Druid LogFilter输出可执行的SQL

配置 测试代码&#xff1a; DruidDataSource dataSource new DruidDataSource(); dataSource.setUrl("xxx"); dataSource.setUsername("xxx"); dataSource.setPassword("xxx"); dataSource.setFilters("slf4j"); dataSource.setVal…

保姆级 C++ 学习路线

上周有小伙伴留言求安排一手C/C学习路线&#xff0c;这周一份保姆级的C语言安排上&#xff01; 以前就写过C语言的学习路线&#xff1a;可能是北半球最好的零基础C语言学习路线&#xff0c;这次把C的学习路线也安排上&#xff0c;专门花了一个多月写了这篇学习路线&#xff0c;…

SQL sever中表管理

目录 一、创建表&#xff1a; 1.1语法格式&#xff1a; 1.2示例&#xff1a; 二、修改表&#xff1a; 2.1语法格式&#xff1a; 2.2示例&#xff1a; 三、删除表&#xff1a; 3.1语法格式&#xff1a; 3.2示例&#xff1a; 四、查询表&#xff1a; 4.1语法格式&…

Mybatis的关联关系映射以及自定义resultMap三种映射关系

目录 经典面试题&#xff1a; 一&#xff0c;关联关系映射 二&#xff0c;具体步骤&#xff1a; 总结 前言&#xff1a; 今天我们来学习Mybatis的关联关系映射以及自定义resultMap三种映射关系&#xff0c;希望这篇博客可以帮助大家的学习工作&#xff01;&#xff01;&…

uniapp里textarea多行文本输入限制数量

uniapp里textarea多行文本域实现输入计数 <template><view class"inputs"><textarea class"text1" maxlength50 placeholder请输入... input"sumfontnum"></textarea><text class"text2">{{fontNum}}/…

对时序数据进行分类与聚类

我在最近的工作中遇到了一个问题&#xff0c;问题是我需要根据银行账户在一定时间内的使用信息对该账户在未来的一段时间是否会被销户进行预测。这是一个双元值的分类问题&#xff0c;只有两种可能&#xff0c;即会被销户和不会被销户。针对这个问题一般来说有两种解决策略。 …

【算法刷题-栈与队列篇】

目录 1.leetcode-232. 用栈实现队列2.leetcode-225. 用队列实现栈3.leetcode-20. 有效的括号&#xff08;1&#xff09;代码1&#xff08;2&#xff09;代码2 4.leetcode-1047. 删除字符串中的所有相邻重复项5.leetcode-150. 逆波兰表达式求值6.leetcode-239. 滑动窗口最大值7.…

2023高教社杯 国赛数学建模A题思路 - 定日镜场的优化设计

1 赛题 A 题 定日镜场的优化设计 构建以新能源为主体的新型电力系统&#xff0c; 是我国实现“碳达峰”“碳中和”目标的一项重要 措施。塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。 定日镜是塔式太阳能光热发电站(以下简称塔式电站)收集太阳能的基本组件&…

卡牌类游戏推荐,卡牌类三国手游排行榜

以下是小编要推荐给大家的关于卡牌类三国手游排行榜的内容。这里有来自各个历史阶段的名将和美女&#xff0c;让你体验最真实的三国战役。你可以将各种战略思维运用到其中&#xff0c;感受步步为营的喜悦&#xff0c;最终赢得战火纷飞的三国&#xff0c;如果想了解每个游戏的具…

【Leetcode刷题】哈希

本篇文章为 LeetCode 哈希模块的刷题笔记&#xff0c;仅供参考。 哈希表是一种使用哈希函数组织数据&#xff0c;以支持快速插入和搜索的数据结构。哈希表通过哈希函数通过将任意类型的数据映射到固定大小的数据&#xff0c;以实现快速查找和存储数据。C 中的无序容器 unorder…

YOLOv5改进算法之添加CA注意力机制模块

目录 1.CA注意力机制 2.YOLOv5添加注意力机制 送书活动 1.CA注意力机制 CA&#xff08;Coordinate Attention&#xff09;注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息&#xff0c;以便模型可以更好地…

iOS App上架新规解析:如何进行App备案

摘要 本文将以iOS技术博主的身份&#xff0c;解析iOS App上架新规中的App备案要求。通过探讨备案对开发者和市场的影响&#xff0c;介绍备案流程和所需材料&#xff0c;帮助开发者了解如何进行App备案。 引言 近年来&#xff0c;移动应用市场蓬勃发展&#xff0c;但同时也存…

索尼 toio™应用创意开发征文|一步两步三步模拟浇花系统

目录 1.toio™介绍 2、创意分析 2.1 创意设计 2.2 创意落地 3、创意实现 3.1 环境安装 3.2 核心玩法 总结 1.toio™介绍 索尼的toio™是一款启发创意的机器人产品&#xff0c;旨在通过与真实世界的互动&#xff0c;为各年龄段的用户提供娱乐体验。这款产品具有高度的灵…

回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测

回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MATLAB实现PCA-BP主成分降维算法结合BP神经网络多输入单输出回…

【完整代码】2023数学建模国赛C题代码--蔬菜类商品的自动定价与补货决策

C 题 蔬菜类商品的自动定价与补货决策 在生鲜商超中&#xff0c;一般蔬菜类商品的保鲜期都比较短&#xff0c;且品相随销售时间的增加而变差&#xff0c; 大部分品种如当日未售出&#xff0c;隔日就无法再售。因此&#xff0c;商超通常会根据各商品的历史销售和需 求情况每天进…

Webpack5入门到原理

Webpack5学习 尚硅谷Webpack5新版视频教程 B站直达&#xff1a;https://www.bilibili.com/video/BV14T4y1z7sw 百度网盘&#xff1a;https://pan.baidu.com/s/114lJRGua2uHBdLq_iVLOOQ 提取码&#xff1a;yyds 阿里云盘&#xff1a;https://www.aliyundrive.com/s/UMkmCzdWsGh&…

如何免费获取CDH集群技术支持

CDH拥有全球70% 的Hadoop用户&#xff0c;在国内也拥有庞大的用户群体。由于Cloudera 和Hortonworks 合并后厂商政策调整&#xff0c;不再更新、不再免费、不再提供服务&#xff0c;众多企业用户生产集群面临着进退两难的窘境和未知的技术风险。 社区版不再更新。Cloudera所有…

移动硬盘或U盘无法弹出的解决方法

以下内容源于网络资源的学习与整理&#xff0c;如有侵权请告知删除。 最近在红米本win11中总遇到“该设备正在使用中”而无法弹出硬盘的问题。 解法该问题的思路&#xff1a;先定位占用该设备的进程&#xff0c;然后结束该进程。 定位进程 既然设备被占用&#xff0c;那肯定…

ubuntu下Anaconda安装与使用教程

前言 好久没用anaconda了&#xff0c;还记得之前用anaconda的欢乐时光。pytorch和paddlepaddle(飞浆)&#xff0c;怀念&#xff0c;可生活&#xff08;换了ubuntu系统之后&#xff09;教会了我残忍&#xff08;可能很难有机会再用windows的anaconda了&#xff09;。找个时间&a…