笔记 | 排序算法实现(Python)

排序算法

      • 一、选择排序
      • 二、合并/归并排序
      • 三、快速排序
      • 四、计数排序

排序类型时间复杂度
选择排序(Selection Sort) O ( n 2 ) O(n^{2} ) O(n2)
合并/归并排序(Merge Sort) O ( n log ⁡ n ) O(n\log n ) O(nlogn)
快速排序(Quick Sort)平均情况 O ( n log ⁡ n ) O(n\log n ) O(nlogn)最糟情况 O ( n 2 ) O(n^{2} ) O(n2)
计数排序(Counting Sort) O ( n + k ) O(n+k ) O(n+k)

一、选择排序

来自《算法图解》一书

def findSmallest(arr):smallest = arr[0]  # 存储最小值smallest_index = 0  # 存储最小值索引for i in range(1,len(arr)):if arr[i] < smallest:smallest = arr[i]smallest_index = ireturn smallest_indexdef selectionSort(arr):newArr = []for i in range(len(arr)):smallest_ind = findSmallest(arr)newArr.append(arr.pop(smallest_ind))return newArrprint(selectionSort([5,3,6,2,10,58,23,31,9,14,4,46,25,35,1,56,29,20,18,43,40,36,49]))

结果:
在这里插入图片描述

二、合并/归并排序

参考: Python实现合并排序(归并排序)(一文看懂)

  1. 将一个序列从中间位置分成两个序列;
  2. 在将这两个子序列按照第一步继续二分下去;
  3. 直到所有子序列的长度都为1,也就是不可以再二分截止。这时候再两两合并成一个有序序列即可。
def merge(arr_a, arr_b):arr_c = []i = j = 0while i < len(arr_a) and j < len(arr_b):if arr_a[i] < arr_b[j]:arr_c.append(arr_a[i])i += 1else:arr_c.append(arr_b[j])j += 1if i == len(arr_a):return arr_c + arr_b[j:]else:return arr_c + arr_a[i:]def mergeSort(arr):if len(arr) < 2:return arrmiddle = len(arr) // 2left = mergeSort(arr[:middle])right = mergeSort(arr[middle:])return merge(left, right)print(mergeSort([23,12,3,7,5,32,37,29,15,24,19]))

结果:
在这里插入图片描述

三、快速排序

来自《算法图解》一书

  1. 选择基准值
  2. 将数组分成两个子数组:小于基准值的元素和大于基准值的元素
  3. 对这两个子数组进行快速排序
def quickSort(arr):if len(arr) < 2:return arr  # 基线条件:为空或只包含一个元素的数组是“有序”的else:pivot = arr[0]  # 递归条件,基准值less = [i for i in arr[1:] if i <= pivot]  # 由所有小于基准值的元素组成的子数组greater = [i for i in arr[1:] if i > pivot]  # 由所有大于基准值的元素组成的子数组return quickSort(less) + [pivot] + quickSort(greater)print(quickSort([10,28,2,36,45,23,14,39,32,24]))

结果:
在这里插入图片描述

四、计数排序

参考: python实现【计数排序】(Count Sort)

  1. 找出待排序的数组中最大和最小的元素;
  2. 统计数组中每个值为i的元素出现的次数,存入count_nums数组的第i项;
  3. 将count_nums数组中从左向右每一个计数不为0的值依次填充进最终的res排序数组中。
def countingSort(arr):max_value = max(arr)res = []count_nums = [0 for i in range(max_value + 1)]for num in arr:count_nums[num] += 1for i in range(len(count_nums)):if count_nums[i] != 0:# res.extend(count_nums[i] * [i]) # 元素i有 count_nums[i]个,添加入最终的排序数组res += count_nums[i] * [i]return resprint(countingSort([12,30,2,29,23,18,5,7,25,15,8]))

结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/125575.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32F4X RTC

STM32F4X RTC 什么是RTCSTM32F4X RTCSTM32F4X RTC框图STM32F4X RTC计数频率STM32F4X RTC日历STM32F4X RTC闹钟 STM32F4X RTC例程 什么是RTC RTC全程叫Real-Time Clock实时时钟&#xff0c;是MCU中一个用来计时的模块。RTC的一个主要作用是用来显示实时时间&#xff0c;就像日常…

利用less实现多主题切换(配合天气现象)

1. 先看效果&#xff1a; 2. 话不多说直接撸吧&#xff1a; 原理&#xff1a;先给body元素添加style&#xff0c;再根据天气现象动态更改style 开撸&#xff1a; 创建src/assets/style/variables.less 使用 XXX:var(–XXX,‘style’) 声明系列变量&#xff0c;之后添加其他变…

单臂路由实验:通过Trunk和子接口实现VLAN互通

文章目录 一、实验背景与目的二、实验拓扑三、实验需求四、实验解法1. PC 配置 IP 地址2. PC3 属于 Vlan10&#xff0c;PC4 属于 Vlan20&#xff0c;配置单臂路由实现 Vlan10 和 Vlan20 三层互通3. 测试在 PC3 上 Ping PC4 &#xff0c;可以 Ping 通 PC4 摘要&#xff1a; 本文…

任意文件读取及漏洞复现

文章目录 渗透测试漏洞原理任意文件读取1. 任意文件读取概述1.1 漏洞成因1.2 漏洞危害1.3 漏洞分类1.4 任意文件读取1.4.1 文件读取1.4.2 任意文件读取1.4.3 权限问题 1.5 任意文件下载1.5.1 一般情况1.5.2 PHP实现1.5.3 任意文件下载 2. 任意文件读取攻防2.1 路径过滤2.1.1 过…

引爆用户参与:消息重弹,让您的推送不再被忽略

在当前各大APP拉新促活成本居高不下的大背景下&#xff0c;如何稳定存量用户、提升用户粘性就显得尤为关键。从促销活动到个性化推荐&#xff0c;从互动通知到功能提醒&#xff0c;消息推送已成为各大APP连接存量用户和目标市场之间的桥梁&#xff0c;通过点击推送&#xff0c;…

springboot初试elasticsearch

引入依赖 elasticsearch的依赖版本与你elasticsearch要一致 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency> 索引库的操作 创建索引库 impo…

Visual Studio 2019下使用C++与Python进行混合编程——环境配置与C++调用Python API接口

前言 在vs2019下使用C与Python进行混合编程,在根源上讲&#xff0c;Python 本身就是一个C库&#xff0c;那么这里使用其中最简单的一种方法是把Python的C API来嵌入C项目中&#xff0c;来实现混合编程。当前的环境是&#xff0c;win10,IDE是vs2019,python版本是3.9&#xff0c…

LeetCode 刷题记录——从零开始记录自己一些不会的

1. 最多可以摧毁的敌人城堡数目 题意 思路 两层循环&#xff0c;太low了 用一个变量记录前一个位置 代码 class Solution { public:int captureForts(vector<int>& forts) {int ans 0, pre -1;for (int i 0; i < forts.size(); i) {if (forts[i] 1 || forts…

04、javascript 修改对象中原有的属性值、修改对象中原有属性的名字(两种方式)、添加对象中新属性等的操作

1、修改对象中原有的属性值 其一、代码为&#xff1a; // 想将 obj 中的 flag 值&#xff0c;根据不同的值来变化(即&#xff1a;修改对象中原有的属性值)&#xff1b; let obj {"port": "port_0","desc": "desc_0","flag&quo…

IP应用场景查询API:深入了解网络用户行为的利器

前言 随着数字时代的不断发展&#xff0c;互联网已经成为人们生活的重要组成部分。而随着越来越多的业务和社交活动迁移到在线平台上&#xff0c;了解和理解网络用户行为变得至关重要。为了满足这个需求&#xff0c;IP 应用场景查询 API 崭露头角&#xff0c;成为深入了解网络…

安卓绘制原理概览

绘制原理 Android 程序员都知道 Android 的绘制流程分为 Measure、Layout、Draw 三步骤&#xff0c;其中 Measure 负责测量 View 的大小Layout 负责确定 View 的位置Draw 负责将 View 画在屏幕上 由 ViewRootImpl 实现的 performTraversal 方法是 Measure、layout、draw 的真正…

Linux创建新文件的几种方式

第一种是 vi 文件名&#xff0c;然后进入vi编辑&#xff0c;完了之后保存退出&#xff1b;然后ls看一下&#xff0c;文件有了&#xff1b; 在终端输入 cat > 文件名&#xff0c;这没用过&#xff1b;输入以后回车&#xff0c;不会退出命令&#xff1b;输入一行文字&#xff…

TLA+学习记录1——hello world

0x01 TLA是个好工具 编程人员一个好习惯是凡事都想偷懒&#xff0c;当然是指要科学地偷懒&#xff0c;而不是真的偷懒。一直想找到一种能检验写出的代码&#xff0c;做出的设计是否真的完全正确&#xff0c;而不是靠经验检视、代码Review、反复测试去检验。因为上述方法不管怎…

学习心得07:C#

之前也没有看过C#的书&#xff0c;C#的程序倒是搞了一些。好在项目不大&#xff0c;我又会套路。 C#很象是JAVA。好像就是JAVA出来之后&#xff0c;微软抄的。好东西就要学习&#xff0c;这不丢脸。 我倒是想&#xff0c;有没有办法把JAVA和C#进行映射&#xff0c;然后直接编译…

Unity入门教程||创建项目(上)

一、介绍 目的&#xff1a;通过尝试制作一款使用玩家角色把小球弹飞的简单小游戏&#xff0c;熟悉使用Unity进行游戏开发的基本流程。 软件环境&#xff1a;Unity 2017.3.0f3&#xff0c;Visual Studio 2013 二、创建新项目 1&#xff0c;启动Unity后将出现一个并列显示Pro…

Springboot 实践(14)spring config 配置与运用--手动刷新

前文讲解Spring Cloud zuul 实现了SpringbootAction-One和SpringbootAction-two两个项目的路由切换&#xff0c;正确访问到项目中的资源。这两个项目各自拥有一份application.yml项目配置文件&#xff0c;配置文件中有一部分相同的配置参数&#xff0c;如果涉及到修改&#xf…

【C++】模拟实现二叉搜索树的增删查改功能

个人主页&#xff1a;&#x1f35d;在肯德基吃麻辣烫 我的gitee&#xff1a;C仓库 个人专栏&#xff1a;C专栏 文章目录 一、二叉搜索树的Insert操作&#xff08;非递归&#xff09;分析过程代码求解 二、二叉搜索树的Erase操作&#xff08;非递归&#xff09;分析过程代码求解…

激光焊接汽车尼龙塑料配件透光率测试仪

激光塑性成型技术是近年来塑性加工界出现的一种新技术。通常塑料主要是通过加热加压依赖模具成型。这对于单品种、大批量生产是有效的&#xff1b;而对于各种不同形状的塑料制件则需要昂贵的模具‚装置也较庞大。 高度聚焦的激光束垂直照射在待变形的板料上‚由于塑料直接吸收激…

Zstack 安装 黑群晖未找到硬盘:解决方法

错误原因&#xff1a; 发生错误的原因&#xff0c;黑群晖要求硬盘为Sata格式&#xff0c;而默认创建的硬盘格式为Virtio&#xff0c;我们要做的就是修改挂载的虚拟硬盘改为Sata格式 解决方法&#xff1a; 1、进入 ZStack&#xff0c;找到黑群晖的主机&#xff0c;查看 UUID …

TSINGSEE青犀视频AI算法助力构建城市市容·街面秩序管理解决方案

随着城市化进程加快&#xff0c;未经合理规划设置自然形成的马路市场越来越多&#xff0c;这不仅存在交通安全隐患&#xff0c;也造成了市容秩序混乱&#xff0c;严重影响城市市容面貌。 TSINGSEE青犀AI智能分析网关V3内部部署了几十种算法&#xff0c;包括人脸、人体、车辆、…