在上一篇文章中,我们讨论了如何构建一个测试助手Agent。今天,我想分享另一个实际项目:如何构建一个翻译助手Agent。这个项目源于我们一个出海团队的真实需求 - 提升翻译效率,保障翻译质量。
从翻译痛点说起
记得和产品团队讨论时的场景:
小王:我们要把产品文档翻译成多种语言,人工翻译太慢了
小李:是啊,而且专业术语的翻译要保持一致性
我:主要是哪些翻译场景?
小王:产品文档、技术文档、营销文案这些
我:这些场景很适合用AI Agent来协助
经过需求分析,我们确定了几个核心功能:
- 智能翻译
- 术语管理
- 质量检查
- 多语言协同
技术方案设计
首先是整体架构:
from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncioclass TranslateTask(Enum):TRANSLATE = "translate"TERM = "term"CHECK = "check"SYNC = "sync"class TranslateContext(BaseModel):task_type: TranslateTasksource_text: strsource_lang: strtarget_lang: strdomain: Optional[str]glossary: Optional[Dict[str, Dict[str, str]]]class TranslateAssistant:def __init__(self,config: Dict[str, Any]):# 1. 初始化翻译模型self.translate_model = TranslateLLM(model="gpt-4",temperature=0.3,context_length=8000)# 2. 初始化工具集self.tools = {"translator": Translator(),"terminator": TermManager(),"checker": QualityChecker(),"syncer": LanguageSyncer()}# 3. 初始化知识库self.knowledge_base = VectorStore(embeddings=TranslateEmbeddings(),collection="translate_knowledge")async def process_task(self,context: TranslateContext) -> Dict[str, Any]:# 1. 分析任务task_info = await self._analyze_task(context)# 2. 准备资源resources = await self._prepare_resources(context,task_info)# 3. 生成方案plan = await self._generate_plan(task_info,resources)# 4. 执行任务result = await self._execute_task(plan,context)return resultasync def _analyze_task(self,context: TranslateContext) -> Dict[str, Any]:# 1. 识别文本类型text_type = await self._identify_text_type(context.source_text)# 2. 评估难度difficulty = await self._evaluate_difficulty(context)# 3. 确定策略strategy = await self._determine_strategy(text_type,difficulty)return {"type": text_type,"difficulty": difficulty,"strategy": strategy}
智能翻译功能
首先实现智能翻译功能:
class Translator:def __init__(self,model: TranslateLLM):self.model = modelasync def translate_text(self,context: TranslateContext) -> Dict[str, Any]:# 1. 预处理文本processed = await self._preprocess_text(context)# 2. 执行翻译translated = await self._perform_translation(processed,context)# 3. 后处理优化optimized = await self._postprocess_translation(translated,context)return optimizedasync def _preprocess_text(self,context: TranslateContext) -> Dict[str, Any]:# 1. 分段处理segments = await self._segment_text(context.source_text)# 2. 提取术语terms = await self._extract_terms(segments,context.glossary)# 3. 标记格式formatted = await self._mark_formats(segments)return {"segments": segments,"terms": terms,"formats": formatted}async def _perform_translation(self,processed: Dict[str, Any],context: TranslateContext) -> List[Dict[str, Any]]:translations = []for segment in processed["segments"]:# 1. 准备上下文translation_context = await self._prepare_context(segment,processed,context)# 2. 生成翻译translation = await self.model.translate(segment,translation_context)# 3. 应用术语translation = await self._apply_terms(translation,processed["terms"])translations.append({"source": segment,"target": translation,"terms": processed["terms"]})return translations
术语管理功能
接下来是术语管理功能:
class TermManager:def __init__(self,model: TranslateLLM):self.model = modelasync def manage_terms(self,context: TranslateContext) -> Dict[str, Any]:# 1. 提取术语terms = await self._extract_terms(context)# 2. 管理术语库glossary = await self._manage_glossary(terms,context)# 3. 应用术语applied = await self._apply_glossary(context,glossary)return appliedasync def _extract_terms(self,context: TranslateContext) -> Dict[str, Any]:# 1. 识别专业术语professional = await self._identify_professional_terms(context.source_text)# 2. 识别产品术语product = await self._identify_product_terms(context.source_text)# 3. 合并去重merged = await self._merge_terms(professional,product)return mergedasync def _manage_glossary(self,terms: Dict[str, Any],context: TranslateContext) -> Dict[str, Dict[str, str]]:# 1. 加载现有术语库existing = context.glossary or {}# 2. 更新术语updated = await self._update_terms(existing,terms)# 3. 验证一致性validated = await self._validate_consistency(updated)return validated
质量检查功能
再来实现质量检查功能:
class QualityChecker:def __init__(self,model: TranslateLLM):self.model = modelasync def check_quality(self,context: TranslateContext,translation: Dict[str, Any]) -> Dict[str, Any]:# 1. 检查准确性accuracy = await self._check_accuracy(translation,context)# 2. 检查流畅性fluency = await self._check_fluency(translation)# 3. 生成报告report = await self._generate_report(accuracy,fluency)return reportasync def _check_accuracy(self,translation: Dict[str, Any],context: TranslateContext) -> Dict[str, Any]:# 1. 语义对比semantic = await self._compare_semantics(translation["source"],translation["target"])# 2. 术语检查terminology = await self._check_terminology(translation,context.glossary)# 3. 格式检查formatting = await self._check_formatting(translation)return {"semantic": semantic,"terminology": terminology,"formatting": formatting}async def _generate_report(self,accuracy: Dict[str, Any],fluency: Dict[str, Any]) -> Dict[str, Any]:# 1. 汇总问题issues = await self._collect_issues(accuracy,fluency)# 2. 评分打分scores = await self._calculate_scores(accuracy,fluency)# 3. 生成建议suggestions = await self._generate_suggestions(issues)return {"issues": issues,"scores": scores,"suggestions": suggestions}
多语言协同功能
最后是多语言协同功能:
class LanguageSyncer:def __init__(self,model: TranslateLLM):self.model = modelasync def sync_languages(self,context: TranslateContext,translations: Dict[str, Dict[str, Any]]) -> Dict[str, Any]:# 1. 分析差异diffs = await self._analyze_differences(translations)# 2. 同步更新synced = await self._sync_updates(translations,diffs)# 3. 验证一致性validated = await self._validate_sync(synced)return validatedasync def _analyze_differences(self,translations: Dict[str, Dict[str, Any]]) -> Dict[str, Any]:# 1. 内容对比content_diffs = await self._compare_content(translations)# 2. 术语对比term_diffs = await self._compare_terms(translations)# 3. 格式对比format_diffs = await self._compare_formats(translations)return {"content": content_diffs,"terms": term_diffs,"formats": format_diffs}async def _sync_updates(self,translations: Dict[str, Dict[str, Any]],diffs: Dict[str, Any]) -> Dict[str, Dict[str, Any]]:# 1. 更新内容content_updated = await self._update_content(translations,diffs["content"])# 2. 更新术语terms_updated = await self._update_terms(content_updated,diffs["terms"])# 3. 更新格式format_updated = await self._update_formats(terms_updated,diffs["formats"])return format_updated
实际效果
经过三个月的使用,这个翻译助手Agent带来了显著的改善:
效率提升
- 翻译速度提升80%
- 术语一致性提高60%
- 多语言同步更快
质量改善
- 翻译更准确
- 表达更地道
- 风格更统一
成本优化
- 人工成本降低
- 返工率减少
- 维护更便捷
实践心得
在开发这个翻译助手Agent的过程中,我总结了几点经验:
场景理解
- 理解专业领域
- 把握语言特点
- 注重文化差异
质量保障
- 术语要统一
- 风格要一致
- 表达要地道
持续优化
- 收集反馈
- 更新知识库
- 优化算法
写在最后
一个好的翻译助手Agent不仅要能准确翻译文本,更要理解专业领域和文化差异,帮助团队提供高质量的多语言内容。它就像一个经验丰富的翻译专家,在合适的时候给出恰当的建议。
在下一篇文章中,我会讲解如何开发一个写作助手Agent。如果你对翻译助手Agent的开发有什么想法,欢迎在评论区交流。