【算法训练-链表 七】【排序】:链表排序、链表的奇偶重排、重排链表

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【链表的排序】,使用【链表】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。

在这里插入图片描述
以及重排链表
在这里插入图片描述

附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

链表排序【MID】

单链表的升序排列

题干

直接粘题干和用例

解题思路

而链表中我们也可以用【合并K个有序链表】同样的方式,当链表被划分到只剩一个节点时,就一定有序。只需要找到中间个元素的前一个节点,将其断开,就可以将链表分成两个子链表,然后继续划分,直到最小,然后往上依次合并。

  • 终止条件: 当子链表划分到为空或者只剩一个节点时,不再继续划分,往上合并。
  • 返回值: 每次返回两个排好序且合并好的子链表。
  • 本级任务: 找到这个链表的中间节点,从前面断开,分为左右两个子链表,进入子问题排序。

怎么找中间元素呢?我们可以使用快慢双指针,快指针每次两步,慢指针每次一步,那么快指针到达链表尾的时候,慢指针正好走了快指针距离的一半,为中间元素。

具体做法:

  1. step 1【入参判断】:首先判断链表为空或者只有一个元素,直接就是有序的。
  2. step 2【找中间节点】:准备三个指针,快指针right每次走两步,慢指针mid每次走一步,前序指针left每次跟在mid前一个位置。三个指针遍历链表,当快指针到达链表尾部的时候,慢指针mid刚好走了链表的一半,正好是中间位置。
  3. step 3【划分子问题】:从left位置将链表断开,刚好分成两个子问题开始递归。
  4. step 4【合并子问题】:将子问题得到的链表合并,参考合并两个有序链表。

代码实现

给出代码实现基本档案

基本数据结构链表
辅助数据结构
算法分治
技巧双指针(快慢指针)

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

import java.util.*;/** public class ListNode {*   int val;*   ListNode next = null;*   public ListNode(int val) {*     this.val = val;*   }* }*/public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param head ListNode类 the head node* @return ListNode类*/public ListNode sortInList (ListNode head) {// 1 入参判断,如果链表只剩一个节点或者空,则直接有序,到达终止条件if (head == null || head.next == null) {return head;}// 2 中间位置为慢指针的下一个节点,奇数节点链表为正中间,偶数则为另一半的开头,所以后半段一定是mid.nextListNode mid= findMidNode(head);// 3 设置后半段链表,断开前后半段链表ListNode newHead = mid.next;mid.next = null;// 4 合并两段有序链表return mergeSortList(sortInList(head), sortInList(newHead));}// 寻找链表中间节点private ListNode findMidNode(ListNode head) {ListNode fast = head;ListNode slow = head;while (fast.next != null && fast.next.next != null) {fast = fast.next.next;slow = slow.next;}// 3 中间位置为慢指针的下一个节点,奇数节点链表为正中间,偶数则为另一半的开头return slow;}// 合并两个有序链表private ListNode mergeSortList(ListNode pHead1, ListNode pHead2) {// 1 入参判断if (pHead1 == null && pHead2 == null) {return null;}if (pHead1 == null) {return pHead2;}if (pHead2 == null) {return pHead1;}// 2 设置结果链表ListNode dummy = new ListNode(-1);ListNode p = dummy;while (pHead1 != null && pHead2 != null) {if (pHead1.val <= pHead2.val) {p.next = pHead1;pHead1 = pHead1.next;} else {p.next = pHead2;pHead2 = pHead2.next;}p = p.next;}// 3 如果其中一个链表为空,后续直接接另一个if (pHead1 == null) {p.next = pHead2;}if (pHead2 == null) {p.next = pHead1;}return dummy.next;}
}

复杂度分析

在这里插入图片描述

链表的奇偶重排【MID】

需要注意的是节点的位置而非节点的值

题干

直接粘题干和用例

解题思路

核心思路就是奇数位节点和偶数位节点断掉重连

  1. step 1:判断空链表的情况,如果链表为空,不用重排。如果链表只有一个节点也不用重排
  2. step 2:使用双指针odd和even分别遍历奇数节点和偶数节点,并给偶数节点链表一个头。
  3. step 3:上述过程,每次遍历两个节点,且even在后面,因此每轮循环用even检查后两个元素是否为NULL,如果不为再进入循环行上述连接过程。
  4. step 4:将偶数节点头接在奇数最后一个节点后,再返回头部。

代码实现

给出代码实现基本档案

基本数据结构链表
辅助数据结构
算法迭代
技巧双指针(同向指针)

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

import java.util.*;/** public class ListNode {*   int val;*   ListNode next = null;*   public ListNode(int val) {*     this.val = val;*   }* }*/public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param head ListNode类* @return ListNode类*/public ListNode oddEvenList (ListNode head) {// 1 入参条件判断if (head == null) {return null;}if (head.next == null) {// 只有1个节点,不用重排return head;}// 2 设置偶数虚拟头节点,并设定奇偶双指针ListNode odd = head;ListNode evenDummy = head.next;ListNode even = evenDummy;// 3 遍历链表,往奇数和偶数节点上补充对应节点,因为even在后边,所以要以even做判断,否则对于1-2-3-4这种情况//odd结束时指向null,null.next会有问题,返回仍然是nullwhile (even != null && even.next != null) {// 奇数位断开指向偶数的指针并指向下一个奇数位odd.next = even.next;odd = odd.next;// 偶数位断开指向奇数的指针并指向下一个偶数位even.next = odd.next;even = even.next;}// 4 遍历完后偶数整体接到奇数后odd.next = evenDummy;return head;}
}

复杂度分析

时间复杂度:O(n),遍历一次链表的所有节点
空间复杂度:O(1),常数级指针,无额外辅助空间

重排链表【MID】

复杂度升级了一些,不过套路类似

题干

直接粘题干和用例

解题思路

注意到目标链表即为将原链表的左半端和反转后的右半端合并后的结果。这样我们的任务即可划分为三步:

  1. 找到中点】找到原链表的中点(参考「876. 链表的中间结点」)。我们可以使用快慢指针来 O(N)O(N)O(N) 地找到链表的中间节点。
  2. 反转右半边】将原链表的右半端反转(参考「206. 反转链表」)。我们可以使用迭代法实现链表的反转。
  3. 合并两个链表】将原链表的两端合并。因为两链表长度相差不超过 11,因此直接合并即可。

以上需要注意的是,找链表中点时,对于奇数个节点,中点为前半段链表所有(从题目示例可以看出)

代码实现

给出代码实现基本档案

基本数据结构链表
辅助数据结构
算法迭代
技巧双指针

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public void reorderList(ListNode head) {// 1 入参校验if (head == null || head.next == null) {return ;}// 2 找到链表中点,断开后半段链表,这次要找的mid要偏右一些,前半段保留偏长,这样后续交替衔接才没问题ListNode mid = middleNode(head);ListNode l1 = head;ListNode l2 = mid.next;mid.next = null;// 3 反转后半段链表l2 = reverse(l2);// 4 将反转后链表连接到原链表中mergeList(l1, l2);}// 交替合并两个链表private void mergeList(ListNode l1, ListNode l2) {ListNode pNext1;ListNode pNext2;// 因为两个链表仅仅相差1,所以直接交替合并即可while (l1 != null && l2 != null) {// 暂存两个链表的下一个节点pNext1 = l1.next;pNext2 = l2.next;// 交替衔接l1和l2l1.next = l2;l1 = pNext1;l2.next = l1;l2 = pNext2;}}// 寻找中间节点private ListNode middleNode(ListNode head) {ListNode slow = head;ListNode fast = head;while (fast.next != null && fast.next.next != null) {slow = slow.next;fast = fast.next.next;}return slow;}// 反转链表private ListNode reverse(ListNode head) {ListNode pre = null;ListNode cur = head;while (cur != null) {ListNode pNext = cur.next;cur.next = pre;pre = cur;cur = pNext;}return pre;}
}

复杂度分析

时间复杂度:遍历了链表,时间复杂度为O(N)
空间复杂度:没有使用额外空间,空间复杂度为O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/128448.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[1]【Matlab代码#57】

文章目录 【获取资源请见文章第5节&#xff1a;资源获取】1. 原始POA算法2. 改进后的IPOA算法2.1 Sine映射种群初始化2.2 融合改进的正余弦策略2.3 Levy飞行策略 3. 部分代码展示4. 仿真结果展示5. 资源获取 【获取资源请见文章第5节&#xff1a;资源获取】 1. 原始POA算法 此…

《极客时间:数据结构与算法之美》【数据结构与算法】

本篇博客是学习过程中的笔记整理和个人思考。原文链接&#xff1a;https://time.geekbang.org/column/intro/100017301 开篇词 | 从今天起&#xff0c;跨过“数据结构与算法”这道坎01 | 为什么要学习数据结构和算法&#xff1f;02 | 如何抓住重点&#xff0c;系统高效地学习数…

IDEA中的MySQL数据库所需驱动包的下载和导入方法

文章目录 下载驱动导入方法 下载驱动 MySQL数据库驱动文件下载方法&#xff1a; 最新版的MySQL版本的驱动获取方法&#xff0c;这个超链接是下载介绍的博客 除最新版以外的MySQL版本的驱动获取方法&#xff0c;选择Platform Independent&#xff0c;选择第二个zip压缩包虾藻…

【鲁棒电力系统状态估计】基于投影统计的电力系统状态估计的鲁棒GM估计器(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

04_瑞萨GUI(LVGL)移植实战教程之驱动LCD屏(SPI)

本系列教程配套出有视频教程&#xff0c;观看地址&#xff1a;https://www.bilibili.com/video/BV1gV4y1e7Sg 4. 驱动LCD屏(SPI) 本次实验我们在上一次实验的基础上驱动 LCD屏(SPI)。 上次实验我们已经能驱动触摸屏(I2C)并打印触摸点坐标&#xff0c;这次实验我们的目标是点…

CRC原理介绍及STM32 CRC外设的使用

1. CRC简介 循环冗余校验&#xff08;英语&#xff1a;Cyclic redundancy check&#xff0c;简称CRC&#xff09;&#xff0c;由 W. Wesley Peterson 于 1961 年首次提出的一种纠错码理论。 CRC是一种数据纠错方法&#xff0c;主要应用于数据通信或者数据存储的场合&#xff…

《Go语言在微服务中的崛起:为什么Go是下一个后端之星?》

&#x1f337;&#x1f341; 博主猫头虎&#x1f405;&#x1f43e; 带您进入 Golang 语言的新世界✨✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文并茂&#x1f…

【云原生系列】Docker学习

目录 一、Docker常用命令 1 基础命令 2 镜像命令 2.1 docker images 查看本地主机的所有镜像 2.2 docker search 搜索镜像 2.3 docker pull 镜像名[:tag] 下载镜像 2.4 docker rmi 删除镜像 2.5 docker build 构建镜像 3 容器命令 3.1 如拉取一个centos镜像 3.2 运行…

leetcode897. 递增顺序搜索树(java)

递增顺序搜索树 题目描述中序遍历代码演示 递归专题 题目描述 难度 - 简单 LC - 897. 递增顺序搜索树 给你一棵二叉搜索树的 root &#xff0c;请你 按中序遍历 将其重新排列为一棵递增顺序搜索树&#xff0c;使树中最左边的节点成为树的根节点&#xff0c;并且每个节点没有左子…

【Linux】进程间通信(匿名管道、命名管道、共享内存等,包含代码示例)

进程间通信 前言正式开始理解进程间通信一些标准管道原理管道演示匿名管道代码演示原理进程池管道大小 命名管道演示代码分配消息例子 systemV共享内存共享内存流程获取key值shm的创建shm的删除关联去关联完整流程演示开始通信 systemV 消息队列基于对共享内存的理解几个概念 前…

Kafka3.0.0版本——消费者(手动提交offset)

目录 一、消费者&#xff08;手动提交 offset&#xff09;的概述1.1、手动提交offset的两种方式1.2、手动提交offset两种方式的区别1.3、手动提交offset的图解 二、消费者&#xff08;手动提交 offset&#xff09;的代码示例2.1、手动提交 offset&#xff08;采用同步提交的方式…

解决ul元素不能跟div同一行显示的办法

现象如下&#xff1a; html结构如下&#xff1a; 可以看到div和ul是同级元素。 为什么这里ul换行了呢&#xff01; 这里要敲黑板了&#xff01; 因为ul是块级元素&#xff01;也就是独占一行&#xff0c;跟div一样。 如果需要ul跟div在同一行显示&#xff0c;则要求ul前面相…

基于改进二进制粒子群算法的含需求响应机组组合问题研究(matlab代码)

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序复现《A Modified Binary PSO to solve the Thermal Unit Commitment Problem》第五章内容&#xff0c;主要做的是一个考虑需求响应的机组组合问题&#xff0c;首先构建了机组组合问题的基本模型&#x…

一文了解Android App Bundle 格式文件

1. Android App Bundle 是什么&#xff1f; 从 2021 年 8 月起&#xff0c;新应用需要使用 Android App Bundle 才能在 Google Play 中发布。 Android App Bundle是一种发布格式&#xff0c;打包出来的格式为aab&#xff0c;而之前我们打包出来的格式为apk。编写完代码之后&a…

vue3:5、组合式API-reactive和ref函数

<script setup> /* reactive接收一个对象类型的数据&#xff0c;返回一个响应式的对象 *//*** ref:接收简单类型或复杂类型&#xff0c;返回一个响应式对象* 本质&#xff1a;是在原有传入数据的基础上&#xff0c;外层报了一层对象&#xff0c;包成了复杂类型* 底层&…

Python小知识 - 如何使用Python进行机器学习

如何使用Python进行机器学习 Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。 机器学习是人工智能的一个分支&#xff0c;是让计算机自动“学习”。学习的过程是从经验E中获得知识K。经验E可以是一个数据集&#xff0c;比如一个图像数据集。知识K可以是计算机…

07_瑞萨GUI(LVGL)移植实战教程之LVGL对接EC11旋转编码器驱动

本系列教程配套出有视频教程&#xff0c;观看地址&#xff1a;https://www.bilibili.com/video/BV1gV4y1e7Sg 7. LVGL对接EC11旋转编码器驱动 本次实验我们向LVGL库中对接EC11旋转编码器驱动&#xff0c;让我们能通过EC11旋转编码器操作UI。 7.1 复制工程 上次实验得出的工…

景区AR虚拟三维场景沉浸式体验成为新兴的营销手段

科技的迅速崛起正在改变我们的世界&#xff0c;旅游业也在这股浪潮中掀起了一场全新的变革。增强现实(AR)技术正成为旅行中的一股强大力量&#xff0c;通过增添趣味和交互性&#xff0c;为旅程注入了前所未有的活力。本文将带您深入了解AR如何为旅游带来全新的体验&#xff0c;…

Docker 实现 MySQL 一主一从配置

1、新建主服务器容器实例&#xff0c;端口&#xff1a; 3307 docker run \ -p 3307:3306 \ --name mysql-master \ -v /var/docker/mysql-master/log:/var/log/mysql \ -v /var/docker/mysql-master/data:/var/lib/mysql \ -v /var/docker/mysql-master/conf:/etc/mysql \ --p…

【EI会议征稿】第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023)

第三届机械自动化与电子信息工程国际学术会议&#xff08;MAEIE 2023&#xff09; 第三届机械自动化与电子信息工程国际学术会议&#xff08;MAEIE 2023&#xff09;将于2023年12月15-17日在江苏南京举行。本会议通过与业内众多平台、社会各团体协力&#xff0c;聚集机械自动…