Matlab如何导入Excel数据并进行FFT变换

如果你发现某段信号里面有干扰,想要分析这段信号里面的频率成分,就可以使用matlab导入Excel数据后进行快速傅里叶变换(fft)。

先直接上使用方法,后面再补充理论知识。

可以通过串口将需要分析的数据发送到串口助手,注意,串口助手复制数据,是你接收了多少,就能复制多少。

将接收到的数据放到Excel表格中,用一列就可以了,不必给数据列表头起名字。

注意:

为了方便进行 FFT 运算,通常数据数量 取 2 的整数次方。可以加快matlab的分析速度,不是也关系不大。

另外,要去掉这一列数据中的空格,否则matlab无法分析出正确结果,选中这一列,查找全部空格,然后在某一个选中的空格上右键删除行即可删除所有空格。

打开matlab软件,点击导入数据

等待一段时间(根据电脑配置而不同)后,就会出现如下界面

范围:虽然将Excel中的所有数据都导入了,但是可以选择数据范围进行分析,这里就可以选择,Am:An,表示A列的第m到第n个数据。

列矢量:因为只导入了一列,所以选择列矢量即可,网上好多教程都是让导入两列,然后选择数值矩阵,其实没有必要。

VarName:导入一列数据时,该列向量的变量名就是VarName,多个的话就是VarName1、VarName2、VarName3……最多到VarName9,所以,如果超过VarName9,就不能再用VarName这个名称了。不过,我们也可以双击这里的名称,然后修改。

一般情况下,数据导入后,只需要选择性地更改名称即可,其他都是默认选择。

确认无误后,点击绿色对钩导入所选内容,当出现蓝色字提示,就表示数据已经导入了

此时,可以在工作区看到该变量名

到了这里,数据已经被导入了。

接下来,就可以进行傅里叶变换,并绘制出幅频图了。

点击新建脚本并保存,然后在脚本中输入以下程序

Fs = 2000;

Y = fft(VarName1);

L = length(Y);

P2 = abs(Y/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

plot(f,P1);

axis([0,Fs/2,0,200]);

title('frequency-domain');

xlabel('f(Hz)');

ylabel('频率成分的幅值');

其中,Y = fft(VarName1);这里的VarName1就是刚才导入的变量名,如果是别的名称,对应起来即可。

选中这些程序,然后右键执行所选内容

稍作等待,就会出现幅频图

可以看到,这个信号里面,是有很多工频干扰的,而且,干扰的范围还不小。

至此,整个使用过程已结束。

理论知识补充

以上的过程其实就是涉及到DSP数字信号处理的知识。

接下来补充一下理论知识,帮助更好地理解以上内容。

首先,什么是傅里叶变换?

傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。

想要更好地理解这个问题,可以参考:

傅里叶分析之掐死教程(完整版)更新于2014.06.06 - 知乎

这篇文章形象地讲解了什么是傅里叶级数和傅里叶变换。

摘录精华如下:

简单点来说,就是任一函数都可以展成三角函数的无穷级数

其次,什么是FFT?

FFT 是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用 FFT 变换的原因。另外,FFT 可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

了解了什么是FFT,就能更好地理解一些问题了。

比如,为什么信号有干扰之后数值会变大?

一般,我们看电流或者电压强度,都是看幅值,本来信号值是5,可是采到的却是48,显然太大了,此时,就是因为有其他频率的干扰叠加在了信号上面,导致幅值增大。如果干扰很大,幅值就会增大很多。

所以,就要搞清楚是什么频率的干扰波叠加在信号上面,因此就可以进行fft变换来分析。

幅频图表示什么含义?

横坐标是连续的频率值,纵向就是各频率信号的幅度值,也就是叠加在原始信号上的强度。

注意:我在上面提供的程序所出来的图,因为做了纵向量纲的校准,所以显示的幅值就是频率的实际幅值。

接下来就要重点讲解一下这段程序。

首先,可以看看这几个视频,看完你就会恍然大悟。

NO.12 傅里叶变换频谱图你必须知道的_哔哩哔哩_bilibili

Fs = 2000;

Y = fft(VarName1);

L = length(Y);

P2 = abs(Y/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

plot(f,P1);

axis([0,Fs/2,0,200]);

title('frequency-domain');

xlabel('f(Hz)');

ylabel('频率成分的幅值');

针对这个程序,一句一句地分析。

Fs = 2000;

一开始,这里面有个采样率Fs,是我最不能理解的部分,因为真的很难理解。

我看了很多网络上的讲解,都没有能够讲解Fs这个怎么来的。

而且,这个Fs真的很关键,非常关键。我在实际操作中,只要Fs变了,频率值就变了,比如,原本是50Hz的干扰,如果Fs减半,频率也会减半到25Hz去显示,这样,就会误导我们,到底是什么频率的干扰?非常容易造成误判。

2000的采样率

1000的采样率

很明显,虽然总体趋势没变,但是频率从原来的50Hz干扰,变到了25Hz的干扰。

这就已经对我们造成了严重的误导。因为就会导致后面一系列的连锁错误。

这么重要的问题,不知道为什么大家都不讲清楚。

由上面的分析可知,只有唯一一个确定的Fs才能够保证我们的分析结果是正确的。

那这个Fs值到底是多少呢?

这个Fs到底是怎么确定的呢?

一开始,我有好多疑问,Fs是matlab分析所需要的,可以任意取值的吗?上面我们已经证明了并不是随便取值的。

然后,我又想,难道是跟原始信号的频率有关?原始信号有无数个频率叠加,不可能是由它们来确定的。而且,叠加之后的频率也没法确定。

那就是ADC的采样频率?有点接近了,不过我查了一下程序,发现ADC的采样频率对不上。

再理一理思路,有一个原始信号,叠加了很多的干扰信号,我用ADC来采集,采集之后通过串口一个一个地发送到PC,ADC的采样速度比串口的速度要快。假设原始信号最大频率是1000Hz,ADC按照2000Hz去采,采了3000个点,可是串口只每隔2个点上传一次,那采样率就是1000?

最终,我想明白了,我要分析的数据是怎么来的,就看它的最终获取频率。

只需要看最终输出,不管中间经历了多少路径,只看最后收到了多少原始数据,不经过任何处理。

串口是每500us发送一个数据,也就是说,采样率是2000,这是我最终得到的数据采样率,也就是我要分析的数据的采样率。

有三种方式可以验证:

  1. 更改串口的发送频率来验证;
  2. 看串口是不是1秒钟接收了那么多数据;
  3. 可以输入一个有明显幅度的特定频率信号,然后验证设定的采样率下,频率显示是否正确。

其中,第三种方式,是最直观最准确的,推荐使用。

Y = fft(VarName1);

傅里叶变换

将时域数据转换成频域数据,也就是一个一个的频率点,是根据欧拉公式,使用复数来表示的。

时域数据

频域数据

这里是用科学计数法来表示的。

第一个数就是实数,第二个数就是虚数,后面的i是虚数单位。

时域数据和频域数据的数量是一样的。N 个采样点,经过 FFT 之后,就可以得到 N 个点的FFT结果。

频域数据具有对称性和周期性。

L = length(Y);

获取数据的长度,也就是数量。

P2 = abs(Y/L);

P1 = P2(1:L/2+1);%这里加1是为了包含对称性数据的中间数据

P1(2:end-1) = 2*P1(2:end-1);

上面说了,频域数据里就是一个一个频率点的复数表示,这些频率点的强度是多少呢?直接对复数值取模即可,也就是abs(Y);

假设 FFT之后某点 n 用复数 a+bi 表示,那么这个复数的模就是:

为什么上面要除以L呢?P2 = abs(Y/L);

其实,不是为了除以L,是想除以L/2。

为什么?

FFT 之后结果就是一个为 N 点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为 A,那么 FFT 的结果的每个点(除了第一个点直流分量之外)的模值就是 A 的 N/2 倍。 而第一个点就是直流分量,它的模值就是直流分量的 N 倍。

根据这段话可知:点的模值=原始信号的模值*(N/2),所以,点的模值/(N/2),就能获取该频率信号实际的幅度值。

以上是先除以L,再P1(2:end-1) = 2*P1(2:end-1);这里乘以2,就是为了换算成实际的幅值。

而且,P1(2:end-1) = 2*P1(2:end-1);这里从第2点开始是为了将直流分量去掉,因为直流分量不用乘以2,直接除以L即可。这里的end表示最后一个元素索引:

为什么去掉最后一个点,只到end-1。

因为end-1表示对称的最中心数据,该频率点的波形不显示。

说明如下:

fs=1000; %设置采样频率 1k

N=1024; %采样点数

n=0:N-1;

t=0:1/fs:1-1/fs; %时间序列

f=n*fs/N; %频率序列

x1=sin(2*pi*70*t); %噪声

x2=sin(2*pi*200*t); %信号

x3=sin(2*pi*500*t); %信号

x=x1+x2+x3; %信号混合

subplot(311);

plot(t,x); %绘制原始信号

xlabel('时间');

ylabel('幅值');

title('原始信号');

可以看到,500Hz的频率图像没有显示出来。

为什么这里只取一半的值?

要注意,这里并不是取一半的值,而是只取一半的点来分析。这是因为傅里叶变换后的数据具有对称性,后一半的数据不具备实际意义。

接下来的这句f = Fs*(0:(L/2))/L;就是为了适应这一点,这句话实际结果就是0—Fs/2,这句话不是为了取一半的点,而是为了取一半的频率。

FFT 之后结果就是一个为 N 点的复数。每一个点就对应着一个频率点。第一个点表示直流分量(即 0Hz),而最后一个点 N 的再下一个点(实际上这个点是不存在的,这里是假设的第 N+1 个点,可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率 Fs,这中间被 N-1 个点平均分成 N 等份,每个点的频率依次增加。

其实,可以从另一个角度来理解,那就是著名的奈奎斯特采样定律:只要采样频率大于或等于有效信号最高频率的两倍,采样值就可以包含原始信号的所有信息,被采样的信号就可以不失真地还原成原始信号。

一个模拟信号,经过 ADC 采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍。

我们这里的采样率是Fs,所以最大只能采到Fs/2的最大频率信号,那么,高于Fs/2的频率部分其实是没有意义的。

另外,根据上面的频率分布可知道,Fn 所能分辨到频率为 Fs/N,如果采样频率 Fs 为 1024Hz,采样点数为1024点,则可以分辨到 1Hz。1024Hz 的采样率采样 1024 点,刚好是 1 秒,也就是说,采样 1 秒时间的信号并做 FFT,则结果可以分析到 1Hz,如果采样 2 秒时间的信号并做 FFT,则结果可以分析到 0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。

所以,如果对分辨率要求不高,就可以少取一些数据。对分辨率要求高,就需要多取一些数据。

由于 FFT 结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。

FFT结果的是存在对称性的,这是由FFT计算中隐含的复数运算处理、以及计算是对周期性离散处理(时域、频域转换) 等带来的特性,一般使用时不用详究,只需要知道存在这个特性即可,数据也只需要用任意一半即可(普遍采用前一半)。

具体原因,可自行查找资料。

对称性示例:

注意,对称性不包含第一个直流分量。

附上手写信号测试:

ts = 0:0.01:10;

sig = sin(2*pi*ts) + 5*sin(2*pi*10*ts);

Fs = 100;

Y = fft(sig);

L = length(Y);

P2 = abs(Y/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

plot(f,P1);

%axis([0,1000,0,200]);

title('frequency-domain');

xlabel('f(Hz)');

ylabel('频率成分的幅值');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/129079.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

postgresql-窗口函数

postgresql-窗口函数 窗口函数简介窗口函数的定义分区排序选项窗口选项 窗口函数简介 包括 AVG、COUNT、MAX、MIN、SUM 以及 STRING_AGG。聚合函数的作用是针对一组数据行进行运算,并且返回一条汇总结果 分析的窗口函数(Window Function)。 …

投稿指南【NO.12_8】【极易投中】核心期刊投稿(组合机床与自动化加工技术)

近期有不少同学咨询投稿期刊的问题,大部分院校的研究生都有发学术论文的要求,少部分要求高的甚至需要SCI或者多篇核心期刊论文才可以毕业,但是核心期刊要求论文质量高且审稿周期长,所以本博客梳理一些计算机特别是人工智能相关的期…

单相并联下垂控原理

Part1 上述有个核心的piont是等效阻抗上的电压一般时很小的,这就导致逆变器输出电压矢量E和负载电压矢量UL之间的夹角很小 》基于上述的结论有助于我们去简化下垂控制的公式!!! Part2 上述得到负载电流,接着乘以负载…

mac 查看端口占用

sudo lsof -i tcp:port # 示例 sudo lsof -i tcp:8080 杀死进程 sudo kill -9 PID # 示例 sudo kill -9 8080

基于奇偶模的跨线桥(crossover)分析

文章目录 1、ADS建模2、奇偶模分析2.1 Port1→Port2传输特性2.1.1奇模分析2.1.2偶模分析 2.2 Port1→Port4传输特性 附:正交混合网络的奇偶模分析1、 Port1→Port21.1奇模分析1.2Port1→Port2偶模分析1.3 奇模传输与偶模传输相位关系![在这里插入图片描述](https://…

蚂蚁开源编程大模型,提高开发效率

据悉,日前蚂蚁集团首次开源了代码大模型 CodeFuse,而这是蚂蚁自研的代码生成专属大模型,可以根据开发者的输入提供智能建议和实时支持,帮助开发者自动生成代码、自动增加注释、自动生成测试用例、修复和优化代码等kslouitusrtdf。…

rrweb入门

rrweb 背景 rrweb 是 record and replay the web,是当下很流行的一个录制屏幕的开源库。与我们传统认知的录屏方式(如 WebRTC)不同的是,rrweb 录制的不是真正的视频流,而是一个记录页面 DOM 变化的 JSON 数组&#x…

zookeeper没有.log日志,只有.out日志

zookeeper没有.log日志,只有.out日志 背景:发现zookeeper没有.log日志,只有.out日志 发现在logs目录下,只有.out文件,且每次重启zk,.out日志都会被覆盖写 为了有完整的log日志,需要如下参数 1…

精品基于SpringCloud实现的高校招生信息管理系统-微服务-分布式

《[含文档PPT源码等]精品基于SpringCloud实现的高校招生信息管理系统-微服务-分布式》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等 软件开发环境及开发工具: 开发语言:Java 框架:springcloud JDK版本&#x…

C++:vector

目录 一、关于vector 二、vector的相关函数 三、相关函数的使用 ①构造函数 ②size ③[] ​编辑 ④push_back ⑤迭代器iterator ⑥reserve ⑦resize ⑧find ⑨insert ⑩erase ⑪sort 一、关于vector vector比较像数组 观察可知,vector有两个模板参数…

计算机图形学环境配置java3D

计算机图形学环境配置java3D JDK18(或者一些版本都无法支持Applet类)idea配置导入java3D的jar包测试代码:运行效果: java3Dwindows64位下载 这个是默认到下图路径中:(记住这个路径,待会要导入ja…

选择 Guava EventBus 还是 Spring Framework ApplicationEvent

文章首发地址 Spring Framework ApplicationEvent Spring Framework 的 ApplicationEvent 是 Spring 框架提供的一种事件机制,用于实现发布和订阅事件的功能。它基于观察者模式,允许应用程序内的组件之间进行松耦合的通信。 下面是关于 Spring Frame…

OJ练习第167题——单词接龙

单词接龙 力扣链接&#xff1a;127. 单词接龙 题目描述 字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> … -> sk&#xff1a; 每一对相邻的单词只差一个字母。 对于 1 < i < k 时&…

C语言实现三字棋

实现以下&#xff1a; 1游戏不退出&#xff0c;继续玩下一把&#xff08;循环&#xff09; 2应用多文件的形式完成 test.c. --测试游戏 game.c -游戏函数的实现 game.h -游戏函数的声明 (2)游戏再走的过程中要进行数据的存储&#xff0c;可以使用3*3的二维数组 char bor…

vue+element使用阿里的图标库保存图标

阿里图标网站iconfont-阿里巴巴矢量图标库 我想使用保存图标&#xff0c;但是element的图标库没有找到可用的&#xff0c;首先在阿里的图标网站搜索保存 发现这个还不错 点击添加入库 点击购物车 点击添加至项目 点击下载到本地 把下载的压缩包里面的文件拖到自己项目里面 在m…

华为三层交换机与路由器对接上网

华为三层交换机与路由器对接上网

高速文件扫描仪:从繁琐到高效的革命性转变

高速文件扫描仪是办公设备中的重要一员&#xff0c;其主要功能是将纸质文件快速转换为数字格式&#xff0c;从而方便存储、传输和管理。那么&#xff0c;这个设备是如何起源并逐步发展起来的呢&#xff1f; 随着信息技术的不断推进&#xff0c;人们对数字化办公的需求变得越来…

私人问答网站搭建指南:Ubuntu+Cpolar+Tipas

文章目录 前言2.Tipask网站搭建2.1 Tipask网站下载和安装2.2 Tipask网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3 Cpolar稳定隧道&#xff08;本地设置&#xff09; 4. 公网访问测试5. 结语 前…

机车整备场数字孪生 | 图扑智慧铁路

机车整备场是铁路运输系统中的重要组成部分&#xff0c;它承担着机车的维修、保养和整备工作&#xff0c;对保障铁路运输的运维和安全起着至关重要的作用。 随着铁路运输的发展、机车技术的不断进步&#xff0c;以及数字化转型的不断推进&#xff0c;数字孪生技术在机车整备场…

在STS里使用Gradle编译Apache POI5.0.0

1、到官方下面地址下载Gradle最新的版本 Gradle Distributions 2、解压后拷贝到D盘下D:\gradle-8.3-rc-4里 3、配置环境变量 新建系统变量 GRADLE_HOME &#xff0c;值为 路径 4、在 Path 中添加上面目录的 bin 文件路径 &#xff08;可以用 %GRADLE_HOME%\bin&#xff0c…